CFD4 - Assignment Data-driven modelling of subgrid scale turbulent kinetic energy



Anh Khoa Doan

#### LES simulations require closure

In LES

- Filtering of the Navier-Stokes equations  $\tilde{\cdot}$  and decomposition  $(u = \tilde{u} + u'')$   $\mathcal{N}(\widetilde{\tilde{u} + u''}) \rightarrow (\tilde{u} \cdot \nabla) \tilde{u} + \nabla \tilde{p} - \nu \nabla^2 \tilde{u} + \nabla \cdot \widetilde{u''u''} = 0$ (Subgrid) Reynolds stress  $\tau_{ij} = \langle u'u' \rangle$  or  $\widetilde{u''u''}$  require closure

# Reynolds stress closure historically relied on physical intuition

- Many existing models for  $\tau_{ij}$ 
  - Eddy viscosity assumption  $\tau_{ij} \approx \frac{2}{3}k\delta_{ij} \nu_T(\nabla_j U_i + \nabla_i U_j)$ 
    - Algebraic models
    - Spalart-Allmaras, ...
    - $k \epsilon, k \omega, \dots$
    - Smagorinsky model (for LES)

...

## Even with physical intuition, model calibration still necessary

• Let's take the  $k - \epsilon$  model, intuition-based transport equations

$$\frac{\partial(\rho k)}{\partial t} + \frac{\partial(\rho k U_i)}{\partial x_i} = \frac{\partial}{\partial x_i} \left( \frac{\mu_t}{\sigma_k} \frac{\partial k}{\partial x_j} \right) + 2\mu_t S_{ij} S_{ij} - \rho \epsilon$$
$$\frac{\partial(\rho \epsilon)}{\partial t} + \frac{\partial(\rho \epsilon U_i)}{\partial x_i} = \frac{\partial}{\partial x_i} \left( \frac{\mu_t}{\sigma_\epsilon} \frac{\partial \epsilon}{\partial x_j} \right) + C_{1\epsilon} \frac{\epsilon}{k} 2\mu_t S_{ij} S_{ij} - C_{2\epsilon} \rho \frac{\epsilon^2}{k}$$
$$\rightarrow \mu_t = \rho C_\mu \frac{k^2}{\epsilon}$$

5 parameters to "fit"  $C_{\mu}$ ,  $\sigma_k$ ,  $\sigma_{\epsilon}$ ,  $C_{1\epsilon}$ ,  $C_{2\epsilon}$ 

See for example Launder & Sharma 1974 for "standard" values (values calibrated for a low *Re* flow around spinning disk)

#### Can we do more than just model calibration?

- Compared to 1970s:
  - Availability of high-resolution datasets
  - "Exact" Reynolds stress could be extracted
  - Can we leverage that?

### The "promise" of data-driven modelling

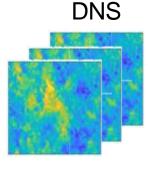
"[Data] has historically been used to calibrate simple engineering models [...] with the availability of large [...] datasets researchers have begun to explore methods to systematically inform turbulence models with data. [...]

[...] by exploiting foundational knowledge in turbulence modeling and physical constraints, data-driven approaches can yield useful predictive models."

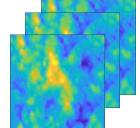
→ How can we leverage (high-fidelity) data to improve the modelling of turbulence?

#### From high-fidelity data to RANS/LES-like data

Postprocessing of high-fidelity simulations 



Filtering/Averaging



LES/RANS-like fields

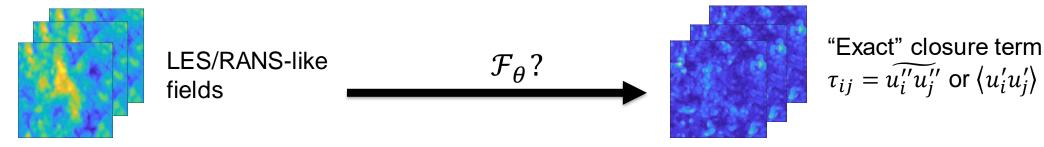
Z A) 1Z == / \

"Exact" closure term 
$$\tau_{ij} = \widetilde{u_i''u_j''}$$
 or  $\langle u_i'u_j' \rangle$ 

 $\rightarrow$  From DNS: dataset that has "resolved" and "unresolved" quantities

Note: similar process can be done starting from LES for RANS

# Data-driven turbulence modelling: finding accurate link between resolved/unresolved

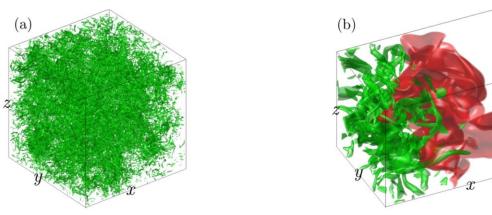


 $\tilde{u} = \int_{\Omega} u(\xi, t) G(x - \xi; \Delta) d\xi$  or  $\langle u \rangle$ 

- Different methods depending on:
  - Choice of "functional form"  $\mathcal{F}_{\theta}$  (symbolic regression, neural networks, random forest, ...)

### Objectives of the assignment

- Develop a NN-based turbulence model for k<sub>sgs</sub> (subgrid scale kinetic energy)
- You are provided with two cases:
  - Homogeneous isotropic turbulence
  - Turbulence statistically planar flame
  - Dataset already filtered at different filtered sizes



### Objectives of the assignment

- Notebook provided: indicates how to read the dataset
- Check the performance of your train NN-based model on the different filter sizes/across the two cases
- No need to develop a BNN-based model

#### Some useful formulas

- Existing models of subgrid kinetic energy are often related to (<sup>2</sup>): test filtering operation):
  - Pope's model:  $k_{sgs} \approx C_p \left| \widetilde{\boldsymbol{u}} \widehat{\widetilde{\boldsymbol{u}}} \right|^2$
  - Bardina's model:  $k_{sgs} \approx C_b \left| \widehat{\widetilde{u} \cdot \widetilde{u}} \widehat{\widetilde{u}} \cdot \widehat{\widetilde{u}} \right|$
  - LDD model:  $k_{sgs} \approx C_m |\Delta^2 \nabla \widetilde{\boldsymbol{u}}: \nabla \widetilde{\boldsymbol{u}}|$

See for more models: I. Langella, N.A.K. Doan, N. Swaminathan, Study of subgrid-scale velocity models for reacting and nonreacting flows, Phys. Rev. Fluids. 3 (2018) 1–24. https://doi.org/10.1103/PhysRevFluids.3.054602.