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Recap from last week

• The neuron
– “Base” function for regression problem

– Single neuron with sigmoid: logistic regression (binary classification)

• Neural networks
– Complex arrangement of neurons

– Can “approximate” any function (universal approximator theorem)

– Trained from data by MSE-minimization
• With (form of) stochastic gradient descent

• Efficient with “automatic differentiation”

• And backpropagation
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Recap from last week and why UQ with NN

• Neural Networks
– Can be used for regression (point-based estimate)

– Can be used for probability distribution estimation over categories 

(classification with negative log-probability loss (cross entropy loss))

• What is the connection with UQ?
– Smooth out the predictions by averaging over plausible explanations

– Get confidence interval

– Make robust decision
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NN converges towards Gaussian process

• Let’s start from a single hidden layer NN with 𝑁 nodes:

• Now, let’s assign some distributions. Assume:
– 𝑏 ∼ 𝒩 0, 𝜎𝑏

2 and 𝑤𝑗 ∼ 𝒩 0, 𝜎𝑤
2

– 𝑣𝑗 (neuron weights) are independently and identically distributed
– 𝜎𝑤

2 scales as 𝑤2/𝑁 then

𝔼 𝑓 𝒖 = 0

= 𝜎𝑏
2 +𝑤2𝔼𝑥 𝑔 𝒖; 𝑥𝑗 𝑔 𝒖′; 𝑥𝑗

– By theorem central limit, 𝑓 converges to a Gaussian process as 𝑁 → ∞

Neal, Bayesian Learning for Neural Netw orks

𝑔 ⋅; 𝑣𝑗

𝑓𝒖
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Structure of the lecture

• Reminder on Bayesian Inference

• Bayesian Neural Network
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Small reminder on Bayesian Inference

• Bayesian inference: predictions by averaging over all likely 

explanations under the posterior distribution

• Posterior estimated with Bayes’ rule

𝒟: distribution of observed values

• Prediction using the posterior predictive distribution:
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Bayesian linear regression

• Bayesian linear regression: considers various “plausible” 

explanation for data generation

• Prediction obtained using all possible regression weights, 

weighted by their posterior probability

• Prior distribution: 𝒘 ∼ 𝒩 𝟎, 𝑺
• Likelihood: 𝑝 𝑦 𝒖,𝒘 ∼ 𝒩 𝒘𝑇𝜓 𝒖 , 𝜎2

• Assumed fixed/known 𝑺 and 𝜎2 is a big assumption
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Bayesian linear regression

Bishop, Pattern Recognition and Machine Learning

1. Prior distribution

2. 3. 4. Model 

distribution is adjusted 

to data

Prior Likelihood

Posterior
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Bayesian Regression

• Example with radial basis function features:

Bishop, Pattern Recognition and Machine Learning
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Bayesian Regression

Bishop, Pattern Recognition and Machine Learning

Functions sampled from the 

posterior:
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Bayesian Regression

• Visualization of confidence intervals based on posterior 

predictive mean and variance

Bishop, Pattern Recognition and Machine Learning
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Structure of the lecture

• Reminder on Bayesian Inference

• Bayesian Neural Network
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Bayesian neural network

• So far: fixed basis functions…

• Can we combine the advantage of neural networks with 

Bayesian models?
– Place a prior on the weights of the network, e.g. 𝑝 𝒘 = 𝒩(𝒘; 𝟎, 𝜂𝑰)
– Define an observation model, e.g. 𝑝 𝑦 𝒖,𝒘 = 𝒩 𝑦; 𝑓𝒘 𝒖 ,𝜎2

– Apply Bayes’ Rule:

𝒟: dataset distribution
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Samples from the prior

• How to interpret prior 𝑝(𝒘) with network kernel?

• Prior samples for a BNN with one hidden layer and 10,000 

units

Neal, Bayesian Learning for Neural Netw orks
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BNN: what to maximize

• More generally, what we consider is:
– Prior weight distribution: 𝑝 𝒘
– Given a training dataset sampled distribution 𝒟
– Likelihood function: 𝑝 𝒟 𝒘 = 𝑝 𝒘 ς𝑖=1

𝑁 𝑝(𝑦 𝑖 |𝒖 𝑖 ,𝒘)
• We could try to:

– maximize 𝑝 𝒟 𝒘 → Maximum likelihood estimation (MLE)
• Can be biased by the data → to be avoided when few data

• Alternate: Bayes rule gives:

• We could try to maximize:
– 𝑝 𝒟 𝒘 𝑝 𝒘 : Maximum a posteriori (MAP) estimation
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Posterior Inference

• Possible use of posterior distribution: sample set of values 

𝒘𝟏 , … , 𝒘𝑲 from the posterior distribution 𝑝 𝒘 𝒟 and average 

their predictive distributions:

• Sample from posterior: can be obtained approximately with 

Markov Chain Monte Carlo
– But can be expensive with very large dataset…

• How can we obtain 𝑝 𝒘 𝒟 ?

• Instead: Variational inference to estimate 𝑝 𝒘 𝒟
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Posterior Inference: Variational Bayes

• Idea: Approximate complex posterior distribution with simpler 

(analytical) variational approximation 𝑞 with parameters 𝜽
– Eg: Assume Gaussian posterior with diagonal covariance

Blundel et al., Weight uncertainty for neural netw ork

𝑞 𝒘; 𝜽 = 𝒩 𝒘;𝝁, 𝚺

“each weight of the network has 

its own mean and variance”
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Posterior Inference: Variational Bayes

• From 𝑞 𝒘; 𝜽 , we now need to estimate the “best” 𝜽 that gives 

us the best approximation of the posterior 𝑝 𝒘 𝒟
• We can use the Kullback-Leibler divergence (“measure of 

distance between two distributions”), 𝐷𝐾𝐿, between the two:
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Posterior Inference: Variational Bayes

• With Bayes’ rule for 𝑝 𝒘|𝒟

= 𝔼𝑞 𝒘;𝜽 log 𝑞 𝒘; 𝜽 − log 𝑝 𝒟|𝒘 − log 𝑝 𝒘 + log 𝑝 𝒟

𝐷𝐾𝐿 𝑞 𝒘; 𝜽 ||𝑝 𝒘|𝒟 = 𝐷𝐾𝐿(𝑞 𝒘;𝜽 | 𝑝 𝒘 − 𝔼𝑞 𝒘;𝜽 log 𝑝 𝒟|𝒘 + log 𝑝 𝒟
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Posterior Inference: Variational Bayes

𝐷𝐾𝐿 𝑞 𝒘;𝜽 ||𝑝 𝒘|𝒟 = 𝐷𝐾𝐿(𝑞 𝒘; 𝜽 ||𝑝 𝒘 ) − 𝔼𝑞 𝒘;𝜽 log 𝑝 𝒟|𝒘 + log 𝑝 𝒟

• ℱ 𝒟, 𝜽 ≡ 𝐷𝐾𝐿(𝑞 𝒘; 𝜽 | 𝑝 𝒘 − 𝔼𝑞 𝒘;𝜽 log𝑝 𝒟|𝒘
– Called “variational free energy”

• We can minimize ℱ with respect to 𝜽 and that will minimize 

𝐷𝐾𝐿 𝑞 𝒘; 𝜽 ||𝑝 𝒘|𝒟
– And 𝑞 𝒘; 𝜽 will approximate the posterior

• Alternate name: ℒ 𝒟, 𝜽 ≡ −ℱ 𝒟, 𝜽 “evidence lower bound”
– As ℒ ≤ 𝑝 𝒟 (as 𝐷𝐾𝐿 ≥ 0)
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Posterior Inference: Variational Bayes

• Now we need to minimize:

ℱ 𝒟,𝜽 ≡ 𝐷𝐾𝐿(𝑞 𝒘; 𝜽 ||𝑝 𝒘 ) − 𝔼𝑞 𝒘;𝜽 log 𝑝 𝒟|𝒘
– 𝐷𝐾𝐿(𝑞 𝒘;𝜽 | 𝑝 𝒘 : “complexity cost”

– 𝔼𝑞 𝒘;𝜽 log 𝑝 𝒟|𝒘 : “likelihood cost”

• Some re-arrangement

ℱ 𝒟,𝜽 = 𝔼𝑞 𝒘;𝜽 log 𝑞 𝒘;𝜽 − 𝔼𝑞 𝒘;𝜽 log 𝑝 𝒘 − 𝔼𝑞 𝒘;𝜽 log 𝑝 𝐷|𝒘

• All terms are expectations with respect to 𝑞 𝒘; 𝜽 , so we can approximate 

them by drawing samples for 𝒘(𝑖) from 𝑞 𝒘;𝜽

→ We can minimize that with respect to 𝜽
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Note on backpropagation with random nodes

• How do we backpropagate with random variables involved?

• “Re-parametrization” trick

Kingma et al., Variational Dropout and Local Reparametrization

Original form: Reparametrized form:

: random node

: deterministic node

𝜖 ∼ 𝒩(0, 𝐼)

𝑓

𝑤

𝜇 𝜎

𝑓

𝜇 𝜎

𝑤

𝜖

1. Sample 𝜖
2. Let 𝑤 = 𝜇 + 𝜎𝜖 (or 𝑤 = 𝜇 + 1+ log𝜎 𝜖)
3. Backpropagate

𝜕𝑓/𝜕𝑤

𝜕𝑓/𝜕𝜇
𝑤 ∼ 𝒩(𝜇, 𝜎)
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Training with Bayesian NN

• Train a Bayesian NN with:
𝑤𝑗 = 𝜇𝑗 + 𝜎𝑗𝜖𝑗

With 𝜖𝑗 ∼ 𝒩 0,1

• 𝜖𝑗 sampled at the beginning of training, independent of 𝜇𝑗 , 𝜎𝑗
– → Deterministic graph, backpropagation algorithm can be used

• If all 𝜎𝑗 = 0, then 𝜃𝑗 = 𝜇𝑗 , and ordinary backpropagation with 

deterministic neural network can be used
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Structure of the lecture

• Reminder on Bayesian Inference

• Bayesian Neural Network
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Bayesian Neural Network - Summary

• Approach that combines Bayesian principle with NN

• Can propagate uncertainty/account for uncertainty


