Introduction to Bayesian Neural Networks

Anh Khoa Doan – n.a.k.doan@tudelft.nl

Recap from last week

- The neuron
	- "Base" function for regression problem
	- Single neuron with sigmoid: logistic regression (binary classification)

- Neural networks
	- Complex arrangement of neurons
	- Can "approximate" any function (universal approximator theorem)
	- Trained from data by MSE-minimization
		- With (form of) stochastic gradient descent
		- Efficient with "automatic differentiation"
		- And backpropagation

Recap from last week and why UQ with NN

- Neural Networks
	- Can be used for regression (point-based estimate)
	- Can be used for probability distribution estimation over categories (classification with negative log-probability loss (cross entropy loss))
- What is the connection with UQ?
	- Smooth out the predictions by averaging over plausible explanations
	- Get confidence interval
	- Make robust decision

NN converges towards Gaussian process

• Let's start from a single hidden layer NN with N nodes:

$$
f(\boldsymbol{u})=b+\sum_{j}^{N}w_{j}g(\boldsymbol{u};\boldsymbol{v}_{j})
$$

- Now, let's assign some distributions. Assume:
	- $-$ *b* ∼ $\mathcal{N}(0, \sigma_b^2)$ and w_j ∼ $\mathcal{N}(0, \sigma_w^2)$
	- v_j (neuron weights) are independently and identically distributed
	- σ_w^2 scales as w^2/N then

$$
\mathbb{E}(f(\boldsymbol{u})) = 0
$$

$$
\mathbb{E}(f(\boldsymbol{u})f(\boldsymbol{u}')) = \sigma_b^2 + \sum_j \sigma_w^2 \mathbb{E}_x(g(\boldsymbol{u}; x_j)g(\boldsymbol{u}'; x_j))
$$

$$
= \sigma_b^2 + w^2 \mathbb{E}_x(g(\boldsymbol{u}; x_j)g(\boldsymbol{u}'; x_j))
$$

By theorem central limit, f converges to a Gaussian process as $N \to \infty$

 $Delt$ t Anh Khoa Doan | CFD IV | 24/05/2022

 $g(\cdot; v_j)$

 $u \times |\bigcap \{x\}$ f

Structure of the lecture

- **Reminder on Bayesian Inference**
- Bayesian Neural Network

Small reminder on Bayesian Inference

- Bayesian inference: predictions by averaging over all likely explanations under the posterior distribution
- Posterior estimated with Bayes' rule

$$
p(\mathbf{w}|\mathcal{D}) = \frac{p(\mathbf{w})p(\mathcal{D}|\mathbf{w})}{p(\mathcal{D})} = \frac{p(\mathbf{w})p(\mathcal{D}|\mathbf{w})}{\int p(\mathcal{D}|\mathbf{w})p(\mathbf{w})d\mathbf{w}}
$$

: distribution of observed values

• Prediction using the posterior predictive distribution:

$$
p(y | u, D) = \int p(w | D) p(y | u, w) dw
$$

Bayesian linear regression

- Bayesian linear regression: considers various "plausible" explanation for data generation
- Prediction obtained using all possible regression weights, weighted by their posterior probability

- Prior distribution: $w \sim \mathcal{N}(0, S)$
- Likelihood: $p(y | u, w) \sim \mathcal{N}(w^T \psi(u), \sigma^2)$
- Assumed fixed/known S and σ^2 is a big assumption

 \textsf{Self} Anh Khoa Doan | CFD IV | 24/05/2022 $\textcolor{red}{8}$

Bayesian linear regression

1. Prior distribution 2. 3. 4. Model distribution is adjusted to data

Bayesian Regression

• Example with radial basis function features:

$$
\phi_j(u) = \exp\left(-\frac{\left(x - \mu_j\right)^2}{2s^2}\right)
$$

TUDelft Anh Khoa Doan | CFD IV | 24/05/2022 **10 Anh Khoa Doan | CFD IV | 24/05/2022** 10

Bayesian Regression

Functions sampled from the posterior:

TUDelft Anh Khoa Doan | CFD IV | 24/05/2022 **11** 11 **CHO** Bishop, Pattern Recognition and Machine Learning 11

Bayesian Regression

• Visualization of confidence intervals based on posterior predictive mean and variance

TUDelft Anh Khoa Doan | CFD IV | 24/05/2022 **12** 12

Structure of the lecture

- Reminder on Bayesian Inference
- **Bayesian Neural Network**

Bayesian neural network

- So far: fixed basis functions...
- Can we combine the advantage of neural networks with Bayesian models?
	- Place a prior on the weights of the network, e.g. $p(w) = \mathcal{N}(w; 0, \eta I)$
	- Define an observation model, e.g. $p(y | u, w) = \mathcal{N}(y; f_w(u), \sigma^2)$
	- Apply Bayes' Rule:

$$
p(\mathbf{w}|\mathcal{D}) \propto p(\mathbf{w}) \prod_{i=1}^N p(y^{(i)}|\mathbf{u}^{(i)}, \mathbf{w})
$$

: dataset distribution

Samples from the prior

- How to interpret prior $p(w)$ with network kernel?
- Prior samples for a BNN with one hidden layer and 10,000 units

 Delta Ineal, Bayesian Learning for Neural Networks and Dell and Dell

BNN: what to maximize

- More generally, what we consider is:
	- Prior weight distribution: $p(w)$
	- Given a training dataset sampled distribution $\mathcal D$
	- Likelihood function: $p(\mathcal{D}|\mathbf{w}) = p(\mathbf{w}) \prod_{i=1}^{N} p(y^{(i)}|\mathbf{u}^{(i)}, \mathbf{w})$
- We could try to:
	- maximize $p(\mathcal{D}|\mathbf{w}) \rightarrow$ Maximum likelihood estimation (MLE)
		- Can be biased by the data \rightarrow to be avoided when few data
- Alternate: Bayes rule gives:

$$
p(\mathbf{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{w})p(\mathbf{w})}{\int p(\mathcal{D}|\mathbf{w})p(\mathbf{w})d\mathbf{w}}
$$

• We could try to maximize:

 $- p(\mathcal{D}|\mathbf{w})p(\mathbf{w})$: Maximum a posteriori (MAP) estimation

Posterior Inference

• Possible use of posterior distribution: sample set of values $w_1, ..., w_k$ from the posterior distribution $p(w|\mathcal{D})$ and average their predictive distributions:

$$
p(y|\mathbf{u}, D) \approx \frac{1}{K} \sum_{k=1}^{K} p(y|\mathbf{u}, \mathbf{w}_k)
$$

- Sample from posterior: can be obtained approximately with Markov Chain Monte Carlo
	- But can be expensive with very large dataset…
- How can we obtain $p(w|\mathcal{D})$?
- Instead: Variational inference to estimate $p(\mathbf{w}|\mathcal{D})$

- Idea: Approximate complex posterior distribution with simpler (analytical) variational approximation q with parameters $\boldsymbol{\theta}$
	- Eg: Assume Gaussian posterior with diagonal covariance

$$
q(\mathbf{w}; \boldsymbol{\theta}) = \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

$$
= \prod_{j} \mathcal{N}(w_{j}; \mu_{j}, \sigma_{j})
$$

"each weight of the network has its own mean and variance"

- From $q(\mathbf{w}; \boldsymbol{\theta})$, we now need to estimate the "best" $\boldsymbol{\theta}$ that gives us the best approximation of the posterior $p(\mathbf{w}|\mathcal{D})$
- We can use the Kullback-Leibler divergence ("measure of distance between two distributions"), D_{KL} , between the two:

$$
D_{KL}(q(\mathbf{w}; \boldsymbol{\theta})||p(\mathbf{w}|\mathcal{D})) \equiv \int q(\mathbf{w}; \boldsymbol{\theta}) \log \frac{q(\mathbf{w}; \boldsymbol{\theta})}{p(\mathbf{w}|\mathcal{D})} d\mathbf{w}
$$

$$
= \mathbb{E}_{q(\mathbf{w}; \boldsymbol{\theta})} \log \frac{q(\mathbf{w}; \boldsymbol{\theta})}{p(\mathbf{w}|\mathcal{D})}
$$

$$
D_{KL}(q(\mathbf{w};\boldsymbol{\theta})||p(\mathbf{w}|\mathcal{D})) = \mathbb{E}_{q(\mathbf{w};\boldsymbol{\theta})} \log \frac{q(\mathbf{w};\boldsymbol{\theta})}{p(\mathbf{w}|\mathcal{D})}
$$

• With Bayes' rule for $p(w|\mathcal{D})$

$$
D_{KL}(q(\mathbf{w}; \boldsymbol{\theta})||p(\mathbf{w}|\mathcal{D})) = \mathbb{E}_{q(\mathbf{w}; \boldsymbol{\theta})} \log \frac{q(\mathbf{w}; \boldsymbol{\theta})}{p(\mathcal{D}|\mathbf{w})p(\mathbf{w})} p(\mathcal{D})
$$

\n
$$
= \mathbb{E}_{q(\mathbf{w}; \boldsymbol{\theta})} \log \frac{q(\mathbf{w}; \boldsymbol{\theta})}{p(\mathcal{D}|\mathbf{w})p(\mathbf{w})} p(\mathcal{D})
$$

\n
$$
= \mathbb{E}_{q(\mathbf{w}; \boldsymbol{\theta})} [\log q(\mathbf{w}; \boldsymbol{\theta}) - \log p(\mathcal{D}|\mathbf{w}) - \log p(\mathbf{w}) + \log p(\mathcal{D})]
$$

\n
$$
D_{KL}(q(\mathbf{w}; \boldsymbol{\theta})||p(\mathbf{w}|\mathcal{D})) = D_{KL}(q(\mathbf{w}; \boldsymbol{\theta})||p(\mathbf{w})) - \mathbb{E}_{q(\mathbf{w}; \boldsymbol{\theta})} [\log p(\mathcal{D}|\mathbf{w})] + \log p(\mathcal{D})
$$

 \sim

 $\widetilde{\mathbf{T}}$ UDelft Anh Khoa Doan | CFD IV | 24/05/2022 20

 $D_{KL}(q(\mathbf{w}; \boldsymbol{\theta})||p(\mathbf{w}|\mathcal{D})) = D_{KL}(q(\mathbf{w}; \boldsymbol{\theta})||p(\mathbf{w})) - \mathbb{E}_{q(\mathbf{w}; \boldsymbol{\theta})}[\log p(\mathcal{D}|\mathbf{w})] + \log p(\mathcal{D})$

- $\mathcal{F}(\mathcal{D}, \theta) \equiv D_{KL}(q(\mathbf{w}; \theta)||p(\mathbf{w})) \mathbb{E}_{q(\mathbf{w}; \theta)}[\log p(\mathcal{D}|\mathbf{w})]$
	- Called "variational free energy"
- We can minimize $\mathcal F$ with respect to $\boldsymbol \theta$ and that will minimize $D_{KL}(q(w; \theta)||p(w|\mathcal{D}))$
	- And $q(w; \theta)$ will approximate the posterior
- Alternate name: $\mathcal{L}(\mathcal{D}, \theta) \equiv -\mathcal{F}(\mathcal{D}, \theta)$ "evidence lower bound"
	- $-$ As $\mathcal{L} \leq p(\mathcal{D})$ (as $D_{KL} \geq 0$)

• Now we need to minimize:

 $\mathcal{F}(\mathcal{D}, \theta) \equiv D_{KL}(q(\mathbf{w}; \theta)||p(\mathbf{w})) - \mathbb{E}_{q(\mathbf{w}; \theta)}[\log p(\mathcal{D}|\mathbf{w})]$

- $D_{KL}(q(w; \theta)||p(w))$: "complexity cost"
- $\mathbb{E}_{a(w;\theta)}[\log p(\mathcal{D}|w)]$: "likelihood cost"
- Some re-arrangement $\mathcal{F}(\mathcal{D}, \theta) = \mathbb{E}_{q(\mathbf{w}:\theta)}[\log q(\mathbf{w}; \theta)] - \mathbb{E}_{q(\mathbf{w}:\theta)}[\log p(\mathbf{w})] - \mathbb{E}_{q(\mathbf{w}:\theta)}[\log p(\mathcal{D}|\mathbf{w})]$
- All terms are expectations with respect to $q(w; \theta)$, so we can approximate them by drawing samples for $\boldsymbol{w}^{(i)}$ from $q(\boldsymbol{w}; \boldsymbol{\theta})$

$$
\mathcal{F}(\mathcal{D}, \boldsymbol{\theta}) \approx \frac{1}{N} \sum_{i}^{N} \log q(\boldsymbol{w}^{(i)}; \boldsymbol{\theta}) - \log p(\boldsymbol{w}^{(i)}) - \log p(D|\boldsymbol{w}^{(i)})
$$

 \rightarrow We can minimize that with respect to θ

Note on backpropagation with random nodes

- How do we backpropagate with random variables involved?
- "Re-parametrization" trick

Original form: Reparametrized form:

 $\epsilon \sim \mathcal{N}(0,I)$ \int μ | σ $\overline{\mathsf{W}}$ ϵ $\partial f/\partial w$ $\partial f/\partial$

- Sample ϵ
- Let $w = \mu + \sigma \epsilon$ (or $w = \mu + (1 + \log \sigma) \epsilon$)
- 3. Backpropagate

Training with Bayesian NN

• Train a Bayesian NN with:

$$
w_j = \mu_j + \sigma_j \epsilon_j
$$

With $\epsilon_i \sim \mathcal{N}(0,1)$

- ϵ_j sampled at the beginning of training, independent of μ_j , σ_j \rightarrow Deterministic graph, backpropagation algorithm can be used
- If all $\sigma_j = 0$, then $\theta_j = \mu_j$, and ordinary backpropagation with deterministic neural network can be used

Structure of the lecture

- Reminder on Bayesian Inference
- Bayesian Neural Network

Bayesian Neural Network - Summary

- Approach that combines Bayesian principle with NN
- Can propagate uncertainty/account for uncertainty