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Recap from last week

* The neuron
— “Base” function for regression problem
— Single neuron with sigmoid: logistic regression (binary classification)

f —®

The Neuron

* Neural networks
— Complex arrangement of neurons
— Can “approximate” any function (universal approximator%theorgm)

— Trained from data by MSE-minimization
«  With (form of) stochastic gradient descent
- Efficient with “automatic differentiation” u
» And backpropagation
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Recap from last week and why UQ with NN

* Neural Networks
— Can be used for regression (point-based estimate)
— Can be used for probability distribution estimation over categories
(classification with negative log-probability loss (cross entropy 10ss))

 Whatis the connection with UQ?

— Smooth out the predictions by averaging over plausible explanations
— Get confidence interval
— Make robust decision
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NN converges towards Gaussian process

« Let’s start from a single hidden layer NN with N nodes:

J
*  Now, let's assign some distributions. Assume:
— b~WN(0,07)and w; ~ N(0,0.2)
— v; (neuron weights) are independently and identically distributed
— 02 scalesas w?/N then

E(fz(vu)) =0
E(ff @) = of + ) oiEy (9(w x)g(w'sx)))
J

= o/ + w?E, (g(u; x;)g(u'; xj))
— By theorem central limit, f converges to a Gaussian processas N — oo

Neal, Bayesian Learning for Neural Netw orks
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Structure of the lecture

- Reminder on Bayesian Inference
- Bayesian Neural Network
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Small reminder on Bayesian Inference

- Bayesian inference: predictions by averaging over all likely
explanations under the posterior distribution
» Posterior estimated with Bayes’ rule
_pw)p(Dlw)  p(w)p(D|w)
p(w|D) = =
p(D) [ p(D|w)p(w)dw
D: distribution of observed values
* Prediction using the posterior predictive distribution:

p(ylu,D) = fp(WID)p(yIu, w)dw
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Bayesian linear regression

- Bayesian linear regression: considers various “plausible”
explanation for data generation

* Prediction obtained using all possible regression weights,
weighted by their posterior probability

P

> > >

no observations one observation two observations

* Prior distribution: w ~ N (0, S)
- Likelihood: p(y|lu,w) ~ ¥ (wly(u), %)
- Assumed fixed/known § and ¢“ is a big assumption
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Bayesian linear regression

likelihood priorfposterior data space
1

Prior =>LIikelihood

X

Posterior

1. Prior distribution

2. 3. 4. Model
distribution is adjusted
to data

Bishop, Pattern Recognition and Machine Learnin
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Bayesian Regression

- Example with radial basis function features:
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Bayesian Regression

Functions sampled from the 1
posterior: t
0
-1
|
i
0
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Bayesian Regression

* Visualization of confidence intervals based on posterior
predictive mean and variance
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Structure of the lecture

* Reminder on Bayesian Inference
- Bayesian Neural Network

TUDelft anh khoa Doan | CFD Iv | 24/05/2022 13



Bayesian neural network

« 3o far: fixed basis functions...
- Can we combine the advantage of neural networks with

Bayesian models?

— Place a prior on the weights of the network, e.g. p(w) = N(w; 0,nI)
— Define an observation model, e.g. p(y|lu,w) = N (y; f,,(w),c%)

— Apply Bayes’ Rule:

N
pwD) < pw) | | p(rO1u®, w)
=1

D: dataset distribution
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Samples from the prior

- How to interpret prior p(w) with network kernel?
*  Prior samples for a BNN with one hidden layer and 10,000
units
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BNN: what to maximize

* More generally, what we consider is:

— Prior weight distribution: p(w)
— Given a training dataset sampled distribution D

— Likelihood function: p(D|w) = pw) [IL,p(y @ |ul® ,w)
- We could try to:

— maximize p(D|w)-> Maximum likelihood estimation (MLE)
- Can be biased by the data - to be avoided when few data

- Alternate. Bayes rule gives:
p(D|w)p(w)

p(w|D) =
-7 I p@Iw)p(w)dw
* We could try to maximize:
— p(Dlw)p(w): Maximum a posteriori (MAP) estimation
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Posterior Inference

» Possible use of posterior distribution: sample set of values
wq, ..., Wi from the posterior distribution p(w|D) and average
their predictive distributions:

K
1
k=1

- Sample from posterior: can be obtained approximately with

Markov Chain Monte Carlo
— But can be expensive with very large dataset...

- How can we obtain p(w|D)?
 Instead: Variational inference to estimate p(w|D)
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Posterior Inference: Variational Bayes

* |ldea: Approximate complex posterior distribution with simpler

(analytical) variational approximation g with parameters 0
— Eg: Assume Gaussian posterior with diagonal covariance

/\,Ag_k\

q(W;DH) =N(w;uX)

= | [ im0 N
) oY gé\ ® O
“each weight of the network has - 7A~A
Its own mean and variance” \@

Blundel et al., Weight uncertainty for neural netw ork
TUDelft anh khoa Doan | CFD Iv | 24/05/2022 ? g 18



Posterior Inference: Variational Bayes

* From g(w; 08), we now need to estimate the “best” 0 that gives

us the best approximation of the posterior p(w|D)
- We can use the Kullback-Leibler divergence (“measure of
distance between two distributions™), Dy, between the two:

Di1(q(w; 0)|[p(w|D)) = jq(w, 0) 10gp(w| )
q(w; 0)

lo
Fatwio) gp(WIZD)

2
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Posterior Inference: Variational Bayes

;0
Dy (aw; O)|IpW[D)) = Eqeuip) 1°gzgx|@§

«  With Bayes’ rule for p(w|D)

DKL(CI(W; 9)||p(W|D)) — IIzq(w;e) lo

_ q(w; 6)
~ Fa0r0) 18 iy P

= E;(w.0)llog q(w; 8) — logp(D|w) — logp(w) + log p(D)]
Dk (qa(w; 8)|[pW|D)) = Di,(q(w; 0)||[p(W)) — Ey(w.0)[log p(DW)] + log p(D)

q(w; 0)
@ wpw) ¥

(D)
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Posterior Inference: Variational Bayes

Dk (q(w;0)|lp(W|D)) = Dk, (q(w; 0)||[p(W)) — Ey(y.0) [log p(D|W)] + log p(D)

* F(D,0) = Dk, (q(w; 0)||p(W)) — Ey(w,0)[logp(D|W)]
— Called “variational free energy”
« We can minimize F with respect to 8 and that will minimize
Dk (q(w; 8)|lp(w|D))
— And g(w; 0) will approximate the posterior
- Alternate name: L(D, 0) = —F (D, 0) “evidence lower bound”
— As L <p(D) (as Dg, = 0)
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Posterior Inference: Variational Bayes

*  Now we need to minimize:
F(D,0) = Dk (q(w; 0)||[p(W)) — Ey(w,0)[log p(D|wW)]
— Dy (q(w; 0)]|p(w)): “complexity cost”
— Eqw.egllogp(D|w)]: “likelihood cost”

* Some re-arrangement
F(D,0) = Eyw,g)llogq(w; 0)] — Eyy, [logp(W)] — Eg(w,0) [log p(D|W)]

- All terms are expectations with respect to g(w; 8), so we can approximate
them by drawing samples for w® from q(w; 0)

N
1 . _ |
F(D,0) ~ NE log CI(W("); 9) — logp(w(‘)) — logp(Dlw(‘))
i

- We can minimize that with respect to 6
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Note on backpropagation with random nodes

- How do we backpropagate with random variables involved?

« “Re-parametrization” trick
Original form: Reparametrized form:

f

w ~ N(u,0)

1. Samplee
Q; deterministic node 2. Letw=pu+oe(orw=pu+(1+logo)e)
3. Backpropagate

.: random node

Kingma et al., Variational Dropout and Local Reparametrization 23
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Training with Bayesian NN

- Train a Bayesian NN with:
Wj = Hj T 0j€;
With €; ~ (0,1)
* €; sampled at the beginning of training, independent of u;, g;
— => Deterministic graph, backpropagation algorithm can be used
- Ifall g =0, then 6; = u;, and ordinary backpropagation with

deterministic neural network can be used
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Structure of the lecture

* Reminder on Bayesian Inference
- Bayesian Neural Network
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Bayesian Neural Network - Summary

* Approach that combines Bayesian principle with NN
- Can propagate uncertainty/account for uncertainty
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