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Structure of the Lecture

• Introduction to Deep Learning
1. Motivation

2. Activation function

3. Feedforward neural network

4. Backpropagation algorithm

5. Training a neural network

• Exercises:
Introduction to tensorflow/keras, implementation of a neuron

Implementation of a neural network for regression/classificiation
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Motivation
3

Assume we want to develop a classifier for this dataset

Simple logistic regression insufficient

→ need a transformation of the input
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Nonlinear transformation of the input is often 

required

4

𝑢1
2 𝑤3

Non-Linear Input

Σ

𝑢1 𝑤1

y

Sigmoid Function

𝑏

𝑢2 𝑤2

Linear Input

Input Layer Output Layer

Hidden Layer



5Anh Khoa Doan | CFD IV | 17/05/2022

Aparté on the universal representation theorem

• If we add neurons/layers, more complex functions can be 

approximated
• Universal approximator theorem

• Several demonstrations with more/less limits

• Arbitrary width, bounded depth (Cybenko 1989, Hornik 1991, 

…)
• Hornik: “Universal approximator for any bounded, non-constant, continuous activation 

function”

• Arbitrary depth, bounded width (Zhou et al. 2017, …)
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Cybenko, G. (1989). "Approximation by superpositions of a sigmoidal function". Mathematics of Control, Signals, and 
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Structure of the Lecture

• Introduction to Deep Learning
1. Motivation

2. Hyperparameters

3. Feedforward neural network

4. Backpropagation algorithm

5. Training a neural network

• Exercises:
Introduction to tensorflow/keras, implementation of a neuron

Implementation of a neural network for regression/classification

7
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Neural network: network of neurons
8
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Neural network Hyperparameters

• Number of layers

• Number of neurons

• Activation function

• Loss function
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Activation function can take many shape 

depending on sought properties

9

tanh

𝑓 𝑥 = ቊ
𝑥, 𝑥 > 0
0, 𝑥 < 0 𝑓 𝑥 = tanh 𝑥

𝑓′ 𝑥 = ቊ
1, 𝑥 > 0
0, 𝑥 < 0

𝑓′ = 1 − 𝑓2

Softmax: “Generalization of 

sigmoid for 𝑛 classes”

𝒇𝑖 𝑥 =
𝑒𝑥𝑖

σ𝑒𝑥𝑖

Gives a “percentage” 

representation (smooth 

version of the argmax 

function)

Linear rectifier (ReLU)
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Structure of the Lecture

• Introduction to Deep Learning
1. Motivation

2. Activation function

3. Feedforward neural network

4. Backpropagation algorithm

5. Training a neural network

• Exercises:
Introduction to tensorflow/keras, implementation of a neuron

Implementation of a neural network for regression/classificiation

10
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Feedforward neural network/Multilayer perceptron 

are obtained by chaining layers of neurons

11

• Dense deep neural network/multilayer perceptron:
• Fully connected neurons organised in layers
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Feedforward neural network are obtained by 

chaining layers of neurons

12

• 𝒙𝑖 = 𝑓 𝒙𝑖−1
𝑇 ⋅ 𝑾𝑖 + 𝒃𝑖

• 𝒙𝑖 ∈ ℝ𝑁𝑖×1

• 𝒙𝑖−1 ∈ ℝ𝑁𝑖−1×1

• 𝑾𝑖 ∈ ℝ𝑁𝑖×𝑁𝑖−1

• 𝒃𝑖 ∈ ℝ𝑁𝑖×1

• 𝑁𝑖: number of neurons 
in 𝑖-th layer

• Layers: find useful nonlinear transformation of the input (features)

• Depth: # of layers, Width: # of neurons in a layer

• See on-going discussions on respective roles (Nguyen et al. (2021), …)

Nguyen et al. (2021), Do Wide and Deep Networks Learn the Same Things? Uncovering How Neural Network 

Representations Vary with Width and Depth. https://arxiv.org/abs/2010.15327

Eldan & Shamir (2016). https://arxiv.org/abs/1512.03965

https://arxiv.org/abs/2010.15327
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Structure of the Lecture

• Introduction to Deep Learning
1. Motivation

2. Activation function

3. Feedforward neural network

4. Backpropagation algorithm

5. Training a neural network

• Exercises:
Introduction to tensorflow/keras, implementation of a neuron

Implementation of a neural network for regression/classificiation

13
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How can we find the “good” network to 

approximate our function of interest?

14

∇𝐿 =

𝜕𝐿

𝜕𝑤1…
𝜕𝐿

𝜕𝑤𝑛 𝒘

𝒘𝑛𝑒𝑤 = 𝒘𝑜𝑙𝑑 − 𝛼∇𝐿

Loss function (MSE if supervised learning)

𝐿 =

𝑖

1

2
ෝ𝑦𝑖 − 𝑦𝑖

2

Gradient descent-based optimization

→ How to get ∇𝐿 efficiently?

Backpropagation algorithm
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Feedforward neural network and computational 

graph

15

Simple graph:

• Nodes are operations

• Arrows are “data”

We know we need Δ𝑤 = −𝛼
𝜕𝐿

𝜕𝒘
. How can we get it?

Let’s start with the simple example below and compute the derivatives of 𝑣 using our “graph”
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Downstream

gradient

Derivatives can be obtained through chain rules
16

We have the chain of operations → Chain rules of derivatives possible

𝜕𝑣

𝜕𝑧
= 𝑞

𝜕𝑣

𝜕𝑞
= 𝑧

𝜕𝑣

𝜕𝑥
=
𝜕𝑣

𝜕𝑞

𝜕𝑞

𝜕𝑥
= 𝑧 ⋅ 1

𝜕𝑣

𝜕𝑦
=
𝜕𝑣

𝜕𝑞

𝜕𝑞

𝜕𝑦
= 𝑧 ⋅ 1

𝑣 = 𝑧𝑞 = 𝑞(𝑥 + 𝑦)

Derivatives:

𝜕𝑣

𝜕𝑧

𝜕𝑣

𝜕𝑞

𝜕𝑣

𝜕𝑥
=
𝜕𝑣

𝜕𝑞

𝜕𝑞

𝜕𝑥 Upstream

gradient
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Computation graph and chain derivatives
17

• Depending on the operation, the direction of the gradient 

“moving upstream” varies:

Addition: Multiplication

Multiplication switches the 

direction of the gradient

Addition keeps the 

direction of the gradient
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Computation graph and chain derivatives
18

𝜕𝑣

𝜕𝑧
= 1 ⋅ 𝑞 = 1 ⋅ 4

𝜕𝑣
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Computation graph and chain derivatives with 

abstract function

19

Forward pass

𝜕𝑧

𝜕𝑥
and 

𝜕𝑧

𝜕𝑦
can be saved during the forward pass if 𝑓′ is known

𝐿 𝑧
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Computation graph and chain derivatives with 

abstract function

20

Backward pass

Already computed during forward pass

And the process can be chained “indefinitely”
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Computation graph and chain derivatives with 

abstract function

21
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The neuron and its derivative
22
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The neuron and its derivative
23
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The neuron and its derivative
24

ො𝑦 = 𝑓 𝒘 ⋅ 𝒙 + 𝒃
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Backpropagation
25

Remember we need Δ𝑊 in the gradient descent: 
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Backpropagation
26
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Backpropagation
27
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Backpropagation with a hidden layer
28
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About the loss functions in regression problem

• Loss function determines how the network is trained.

• For regression
• 𝐿2 or 𝐿1 error used. 𝐿2 preferred for smoother gradient

• For classification
• Binary cross entropy loss

• Categorical cross entropy loss

𝐻𝑞 = −

𝑐=1

𝑀

𝑦𝑜,𝑐 log 𝑝𝑜,𝑐

29



30Anh Khoa Doan | CFD IV | 17/05/2022

Note on the Categorical Entropy Loss

• In classification problems, the cross entropy combines the 

error on the prediction and the probability associated to that 

prediction within a loss function.

30

Mathematically, this is:

−

𝑐=1

𝑀

𝑦𝑜,𝑐 log 𝑝𝑜,𝑐

𝑀: number of classes

𝑦: binary indicator (0 or 1) if the class 𝑐
is the correct classification for the 

sample 𝑜
𝑝𝑜,𝑐: predicted probability that sample 𝑜

is of class 𝑐



31Anh Khoa Doan | CFD IV | 17/05/2022

Structure of the Lecture

• Introduction to Deep Learning
1. Motivation

2. Activation function and loss function

3. Feedforward neural network

4. Backpropagation algorithm

5. Training a neural network

• Exercises:
Introduction to tensorflow/keras, implementation of a neuron

Implementation of a neural network for regression/classificiation

31
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Strategizing the training of a neural network is 

important

• Objective: get the best model as efficiently as possible

• Big data is not always the solution (or possible)

• How to spend the effort in the right direction

• Approaches
• Collect more data

• Diversify the available data

• Hyperparameter tuning

• Change the algorithm

• Try regularization techniques

• Try bigger/smaller architectures

• Change the architecture

32
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Training a neural network

1. Data visualization
• (if possible) Always start by visualizing the data

• Helps with spotting trends/outliers/peaks/…

• Provides insights into pre-processing needed

• Tools:

Histogram, scatter plot, box plot, violin plot, …

33
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Training a neural network

2. Check Data Distribution of the Input Data: normalization

34
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Training a neural network

2. Check Data Distribution of the Input Data: normalization

35
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Training a neural network

2. Check Data Distribution of the Input Data: normalization

36
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Training a neural network

2. Check Data Distribution of the Input Data: normalization

Unormalized Data Normalized Data

37
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Training a neural network

3. Dataset split

• Dataset generally split into three parts:
• Training data: Data used during the training phase to compute gradient and 

loss

• Validation data: Data used simultaneously during training to assess the risk of 

overfitting

• Test data: Data never used during training and used to assess the 

performance of the trained neural network

38

Training Validation Testing

Data
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Training a neural network

4. Network regularization – weight penalization

• Helps in avoiding overfitting of the model

• Discourage learning more complex model

• L2 regularization

𝐽 𝒚, ෝ𝒚;𝑾,𝑩 =
1

𝑚


𝑖=1

𝑚

𝐿(𝒚(𝑖), ෝ𝒚(𝑖)) +
𝜆

2𝑚


𝑙=1

𝐿

𝒘 𝑙
𝐹

2

𝒘 𝑙
𝐹

2
=

𝑖=1

𝑛(𝑙)



𝑗=1

𝑛(𝑙−1)

𝑤𝑖𝑗
2

• Large 𝜆 penalizes large 𝑤𝑖𝑗

• (also L1 regularization)

39
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Training a neural network

4. Network regularization – Dropout layer

• Dropout regularization

• Proportion of neurons are randomly “removed” during training 

for each batch

• Prevents excessive co-adaptation of the neurons

• Model cannot rely on a particular feature to make a prediction

40

[Srivanista et al.,  JMLR, 2014]



41Anh Khoa Doan | CFD IV | 17/05/2022

Training a neural network

4. Network regularization – Other

• Other regularization approaches:
• Data augmentation (e.g. cropping, rotation, distortion in images)

• Early stopping

41

Validation error
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Training a neural network

5. Optimization method – Gradient Descent

42

1
L

2
L

3
L

4
L

1. forward path

2. forward path

3. forward path

4. forward path All the data

𝐿 𝒚 =
1

𝑁


𝑁

𝑦𝑖 − ො𝑦𝑖
2

𝒘𝑛𝑒𝑤 = 𝒘𝑜𝑙𝑑 − 𝛼∇𝐿𝑤

𝛼∇𝐿𝑤
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Training a neural network

5. Optimization method – Stochastic Gradient Descent

Only use one random

datapoint at a time
1

L

𝐿 𝒚 =

1

𝒚(𝑖) − ෝ𝒚(𝑖)
2

𝒘𝑛𝑒𝑤 = 𝒘𝑜𝑙𝑑 − 𝛼∇𝐿𝑤

𝛼∇𝐿𝑤

Reduces compute time 

per optimisation step

But finding local

minimums takes longer

43
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Batch Gradient Descent

A Compromise

44

2
L

Split dataset in batches,

=> Trying to minimize

global loss function with

local cost functions

1
L

3
L

4
L

5
L

𝐿 𝒚 =
1

𝑀


𝑀

𝑦𝑖 − ො𝑦𝑖
2

𝐿 𝒚 =
1

𝑀


𝑀

𝒚(𝑖) − ෝ𝒚(𝑖)
2

𝒘𝑛𝑒𝑤 = 𝒘𝑜𝑙𝑑 − 𝛼∇𝐿𝑤

𝛼∇𝐿𝑤

Learning rate can also be adapted: 

ADAM optimizer
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Training a neural network

5. Optimization method – Terminology

45

• Training:

for n < max_epochs:

for sample in batch_size

Forward path

Backward path

Accumulate loss

Update weights

• Epochs: how often the entire training dataset is used 

• Batch: how many samples are used to compute 𝐿 and 

apply the gradient descent step
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Summary

• Neural Network are tools that can approximate any nonlinear 

function

• Computational Graph enables a straightforward gradient 

calculation

• Backpropagation algorithm allows to compute weight updates

• Overview of training process for neural networks

46
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Extra slides on activation functions
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Activation Functions

Sigmoid

49

x

1
f(x)

1 e

f'(x) f(x)(1 f(x))

−
=

+

= −

1

8

Two main problems:

• Causes vanishing gradient: 

Gradient nearly zero for very large 

or small x, kills gradient and

network stops learning

• Output isn‘t zero centered: Always

all gradients positive or all negativ, 

inefficient weight updates

x

y
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Activation Functions

Hyperbolic tangent

50

1

6

1−

6−

x x

x x

x x 2

e e
f(x)

e e

4
f'(x)

(e e )

−

−

−

−
=

+

=
+

Better than sigmoid:

• Output is zero centered

• But still causes vanishing gradient

x

y
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Activation Functions

Rectified Linear Unit (ReLU)

51

1

1

x,x 0
f(x)

0,x 0

1,x 0
f'(x)

0,x 0

 
= 



 
= 



Most common activation function:

• Computationally efficient

• Converges very fast

• Does not activate all neurons at the

same time

Problem:

• Gradient is zero for x<0 and can cause

vanishing gradient -> dead relus may

happen

• Not zero centered

Usage:

• Mostly used in hidden layers

• Positive bias at init to get active ReLU

x

y

0 1 x

ReLU introducted in 1960s for visual feature extraction

(Fukushima et al.)

Popularised in 2010s (Nair & Hinton)
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Activation Functions

Leaky ReLU

52

1

1

x,x 0
f(x)

ax,x 0

1,x 0
f'(x)

a,x 0

 
= 



 
= 



Improves on ReLU:

• Removes zero part of ReLU by adding a 

small slope. More stable then relu, but adds

another paramter

• Computationally efficient

• Converges very fast

• Doesn‘t die

• Parameter a can also be learned by the

network

x

y
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Activation Functions

Exponential Linea Unit (ELU) 

53

1

1

x

x

x,x 0
f(x)

a(e 1),x 0

1,x 0
f'(x)

ae ,x 0

 
= 

− 

 
= 



• Benefits of ReLU and Leaky ReLU

• Computation requires
x
e

x

y
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Activation Functions

Softmax

54

• Type of Sigmoid, handy for

classification problems.

• Divides by the sum of all outputs, 

allows for percentage representation

Classifier:

Dog

Cat

Mouse

1.2

0.9

0.75

With Softmax

Dog

Cat

Mouse

0.42

0.31

0.27

1

i

k

y

K y

k 1

e
f(x)

e
=

=
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About the softmax function
55

Let’s assume we need to classify between 4 classes

The softmax output the probability of each 

class

softmax

0.087492

0.872661

0.039312

0.0000292

2

4.3

1.2

-3.1

Then, during 

prediction, take the 

“argmax” to 

determine which 

class
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Activation Functions

Rule of thumb

• Sigmoid / Softmax for classifiers

• Sigmoid, tanh sometimes avoided due to vanishing gradient

• ReLU mostly used today, but should only be used in hidden 

layer

• Start with ReLU if you don‘t get optimal results go for 

LeakyReLU or ELU

• Often, linear layer as the last layer of the network if regression 

problem

56


