## Machine Learning and Artificial Neural Networks

Anh Khoa Doan – n.a.k.doan@tudelft.nl

## Structure of the Lecture

#### Introduction to Deep Learning

- 1. Motivation
- 2. Activation function
- 3. Feedforward neural network
- 4. Backpropagation algorithm
- 5. Training a neural network

#### • Exercises:

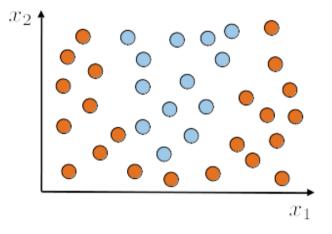
2

Introduction to tensorflow/keras, implementation of a neuron Implementation of a neural network for regression/classificiation

#### **Motivation**

3

#### Assume we want to develop a classifier for this dataset



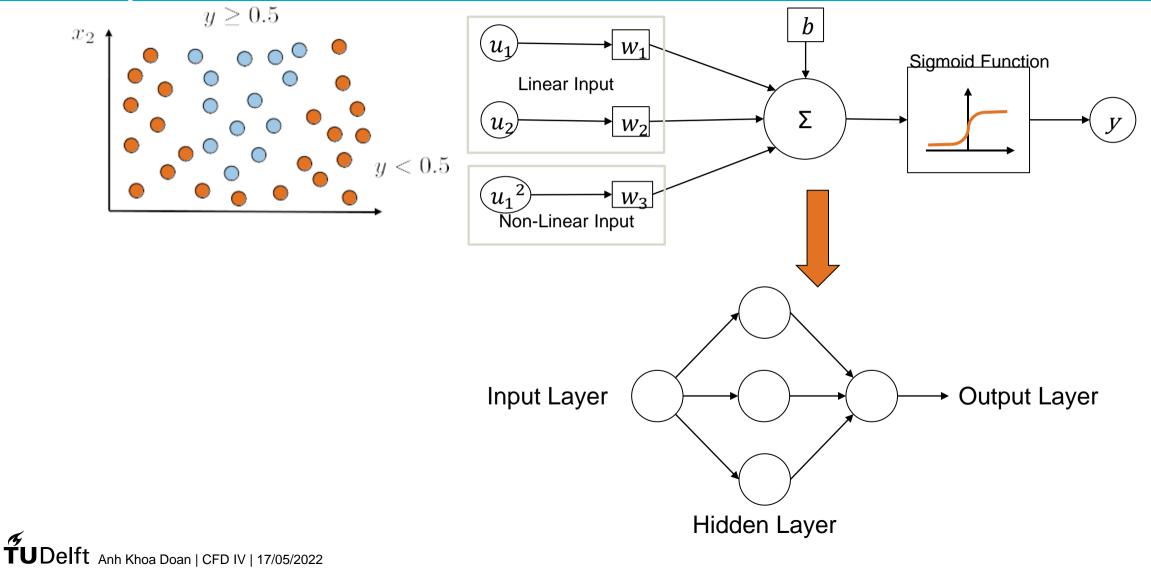
## Simple logistic regression insufficient $\rightarrow$ need a transformation of the input

**FUDelft** Anh Khoa Doan | CFD IV | 17/05/2022

### Nonlinear transformation of the input is often required

4

Þ



#### Aparté on the universal representation theorem

- If we add neurons/layers, more complex functions can be approximated
  - Universal approximator theorem
  - Several demonstrations with more/less limits
- Arbitrary width, bounded depth (Cybenko 1989, Hornik 1991, ...)
  - Hornik: "Universal approximator for any bounded, non-constant, continuous activation function"
- Arbitrary depth, bounded width (Zhou et al. 2017, ...)

Cybenko, G. (1989). "Approximation by superpositions of a sigmoidal function". *Mathematics of Control, Signals, and Systems.* **2** (4): 303–314. Hornik, Kurt (1991). "Approximation capabilities of multilayer feedforward networks". *Neural Networks.* **4** (2): 251–257. Lu, Zhou; Pu, Homgming; Wang, Feicheng; Hu, Zhiqiang; Wang, Liwei (2017). "The Expressive Power of Neural Networks: A

<u>View from the Width</u>". Advances in Neural Information Processing Systems. Curran Associates. **30**: 6231–6239.

## Structure of the Lecture

#### Introduction to Deep Learning

1. Motivation

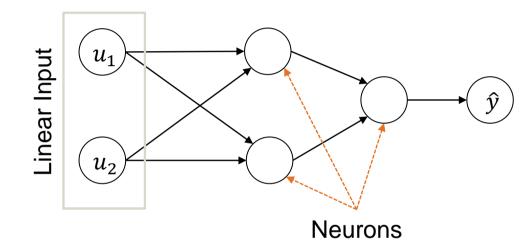
#### 2. Hyperparameters

- 3. Feedforward neural network
- 4. Backpropagation algorithm
- 5. Training a neural network

#### • Exercises:

Introduction to tensorflow/keras, implementation of a neuron Implementation of a neural network for regression/classification

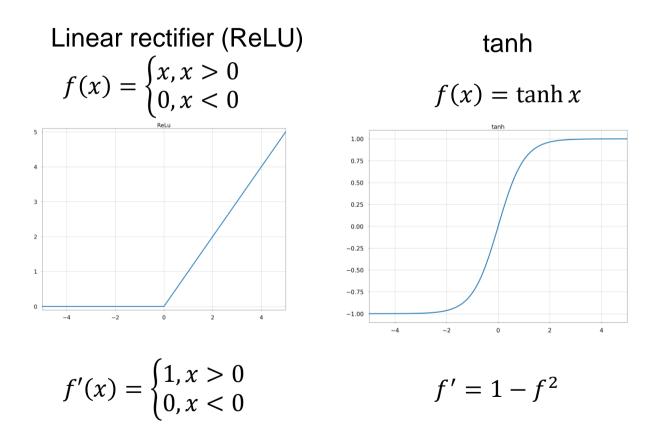
### Neural network: network of neurons



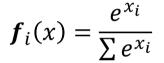
#### **Neural network Hyperparameters**

- Number of layers
- Number of neurons
- Activation function
- Loss function

## Activation function can take many shape depending on sought properties



Softmax: "Generalization of sigmoid for *n* classes"



Gives a "percentage" representation (smooth version of the argmax function)

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

## Structure of the Lecture

#### Introduction to Deep Learning

- 1. Motivation
- 2. Activation function

#### **3.** Feedforward neural network

- 4. Backpropagation algorithm
- 5. Training a neural network

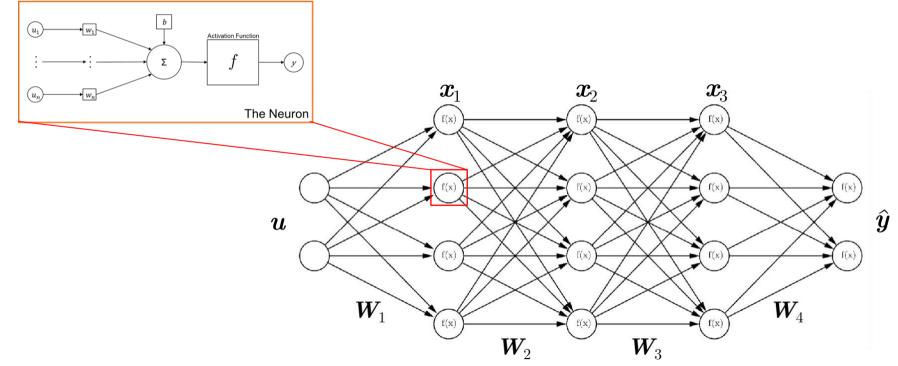
#### • Exercises:

10

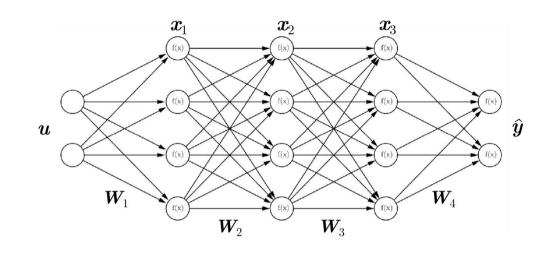
Introduction to tensorflow/keras, implementation of a neuron Implementation of a neural network for regression/classificiation

# Feedforward neural network/Multilayer perceptron are obtained by chaining layers of neurons

- Dense deep neural network/multilayer perceptron:
  - Fully connected neurons organised in layers



# Feedforward neural network are obtained by chaining layers of neurons



- $\boldsymbol{x}_{i} = f(\boldsymbol{x}_{i-1}^{T} \cdot \boldsymbol{W}^{i} + \boldsymbol{b}^{i})$  $\boldsymbol{x}_{i} \in \mathbb{R}^{N_{i} \times 1}$
- $x_i \in \mathbb{R}^{N_i \times 1}$ •  $x_{i-1} \in \mathbb{R}^{N_{i-1} \times 1}$

• 
$$\boldsymbol{W}^i \in \mathbb{R}^{N_i \times N_{i-1}}$$

• 
$$\boldsymbol{b}^i \in \mathbb{R}^{N_i \times 1}$$

 N<sub>i</sub>: number of neurons in *i*-th layer

12

- Layers: find useful nonlinear transformation of the input (features)
- Depth: # of layers, Width: # of neurons in a layer
- See on-going discussions on respective roles (Nguyen et al. (2021), ...)

## Structure of the Lecture

#### Introduction to Deep Learning

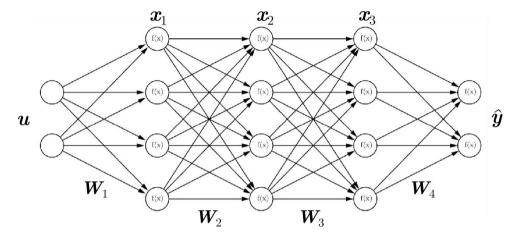
- 1. Motivation
- 2. Activation function
- 3. Feedforward neural network
- 4. Backpropagation algorithm
- 5. Training a neural network

#### • Exercises:

13

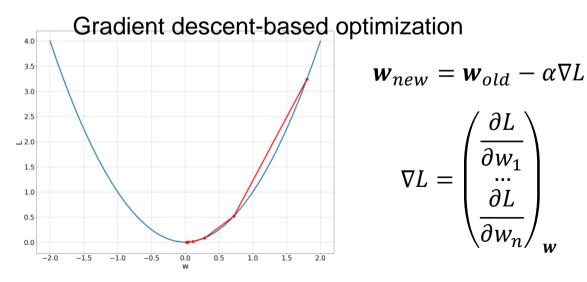
Introduction to tensorflow/keras, implementation of a neuron Implementation of a neural network for regression/classificiation

# How can we find the "good" network to approximate our function of interest?



Loss function (MSE if supervised learning)

$$L = \sum_{i} \frac{1}{2} \left| \left| \widehat{y}_{i} - y_{i} \right| \right|$$



→ How to get  $\nabla L$  efficiently? Backpropagation algorithm

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

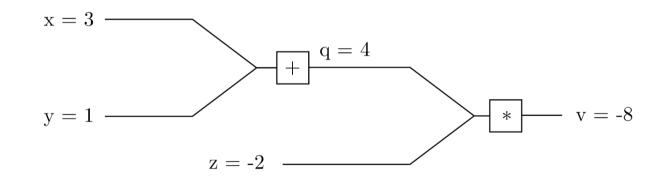
# Feedforward neural network and computational graph

We know we need  $\Delta w = -\alpha \frac{\partial L}{\partial w}$ . How can we get it?

Let's start with the simple example below and compute the derivatives of v using our "graph"

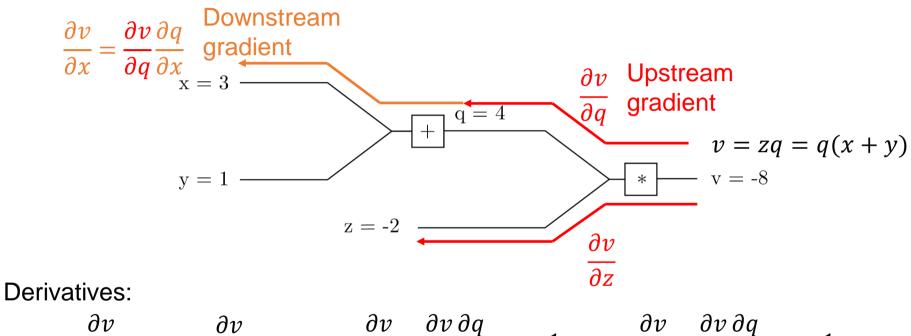
Simple graph:

- Nodes are operations
- Arrows are "data"



### Derivatives can be obtained through chain rules

We have the chain of operations  $\rightarrow$  Chain rules of derivatives possible

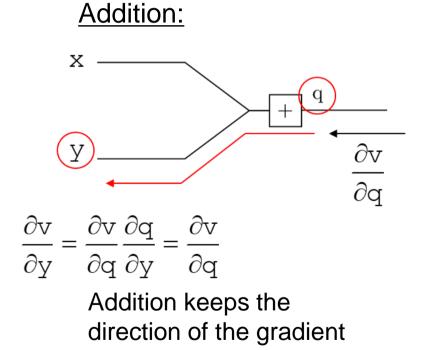


$$\frac{\partial v}{\partial z} = q \qquad \frac{\partial v}{\partial q} = z \qquad \frac{\partial v}{\partial x} = \frac{\partial v}{\partial q} \frac{\partial q}{\partial x} = z \cdot 1 \qquad \frac{\partial v}{\partial y} = \frac{\partial v}{\partial q} \frac{\partial q}{\partial y} = z \cdot 1$$

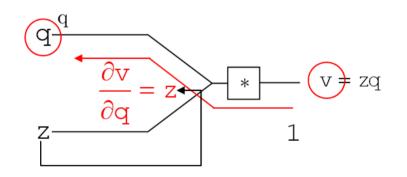
TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

## Computation graph and chain derivatives

 Depending on the operation, the direction of the gradient "moving upstream" varies:

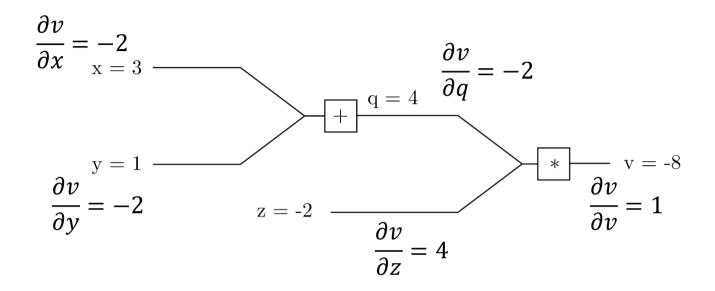


#### **Multiplication**



Multiplication switches the direction of the gradient

### Computation graph and chain derivatives



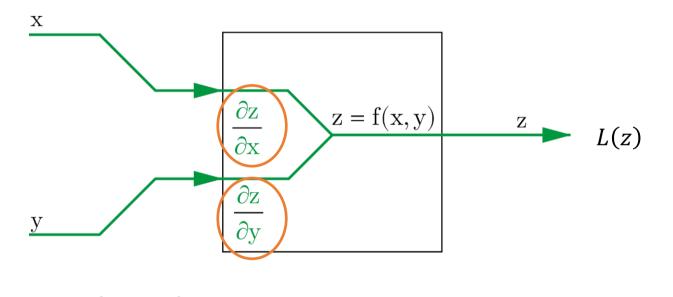
$$\frac{\partial v}{\partial z} = 1 \cdot q = 1 \cdot 4 \qquad \frac{\partial v}{\partial q} = 1 \cdot z = 1 \cdot -2 \qquad \frac{\partial v}{\partial x} = \frac{\partial v}{\partial q} \frac{\partial q}{\partial x} = z \cdot 1 \qquad \frac{\partial v}{\partial y} = \frac{\partial v}{\partial q} \frac{\partial q}{\partial y} = z \cdot 1 = -2 \cdot 1 \qquad = -2 \cdot 1$$

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

## Computation graph and chain derivatives with abstract function

Forward pass

19



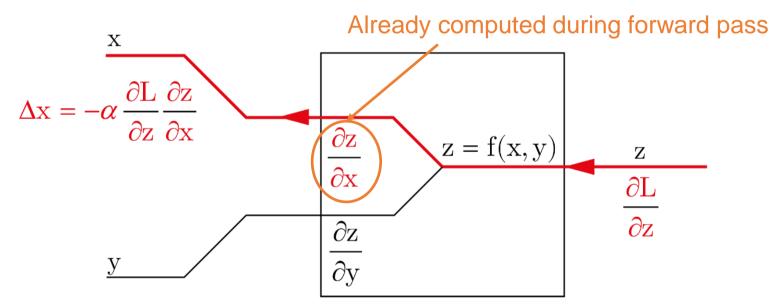
 $\frac{\partial z}{\partial x}$  and  $\frac{\partial z}{\partial y}$  can be saved during the forward pass if f' is known

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

## Computation graph and chain derivatives with abstract function

Backward pass

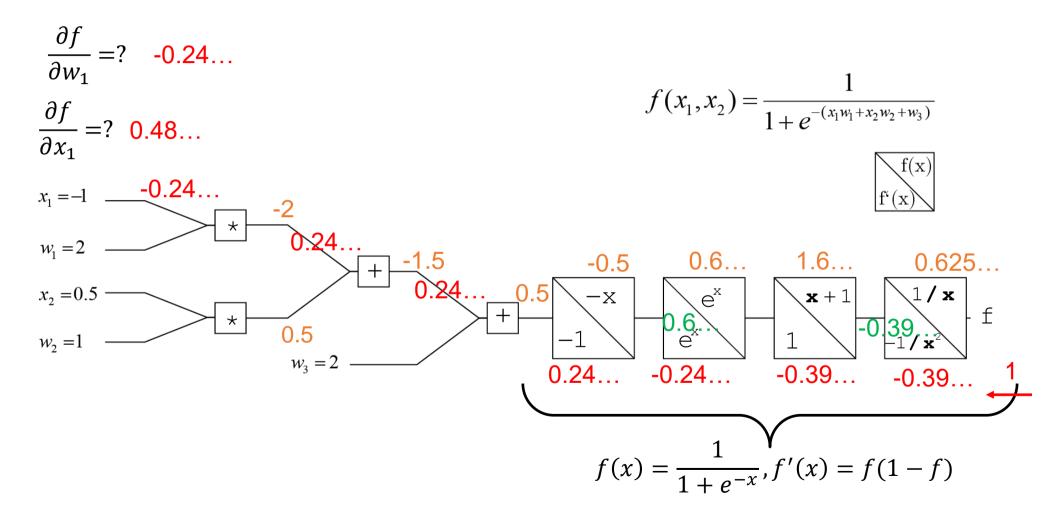
20



And the process can be chained "indefinitely"

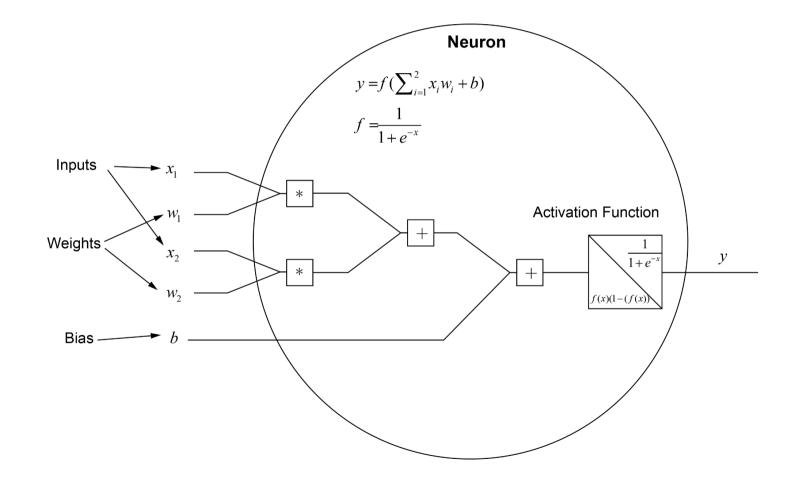
TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

## Computation graph and chain derivatives with abstract function

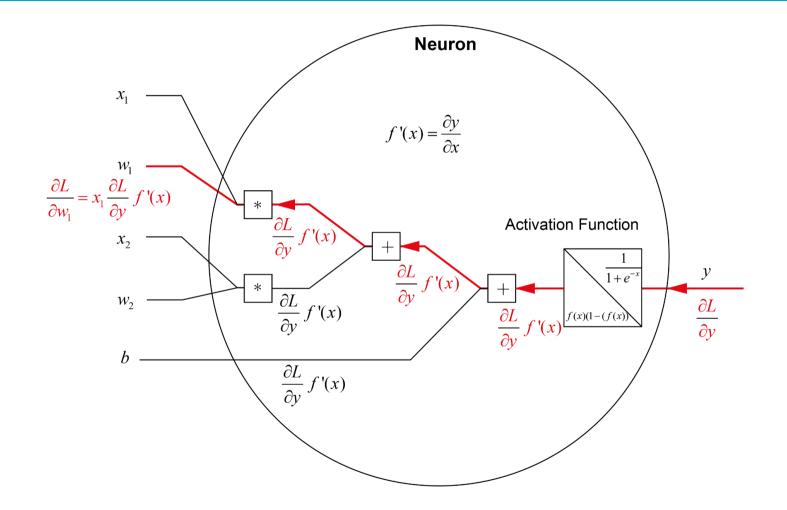


TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

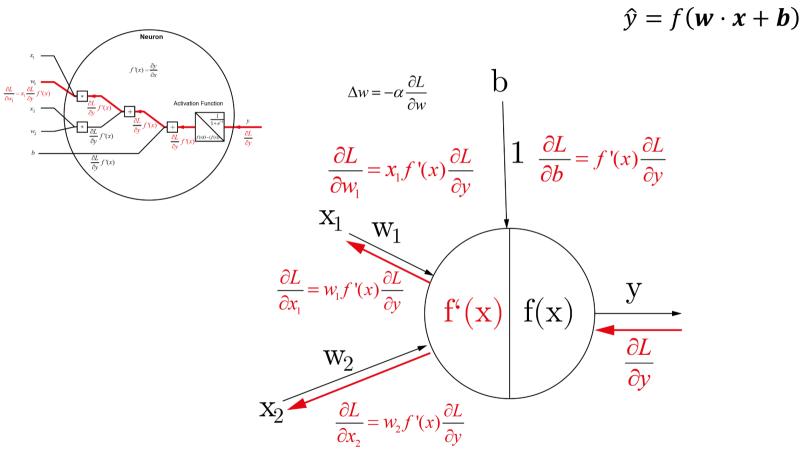
### The neuron and its derivative



### The neuron and its derivative

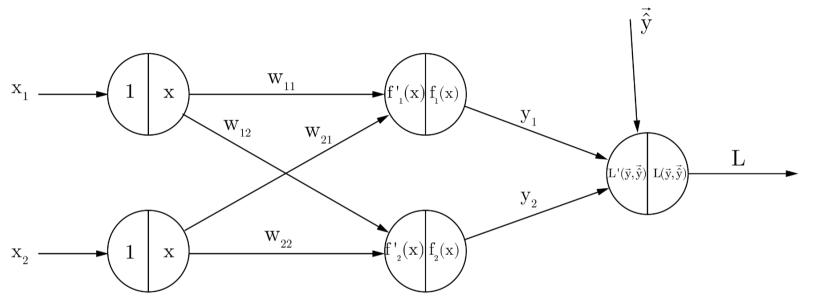


### The neuron and its derivative

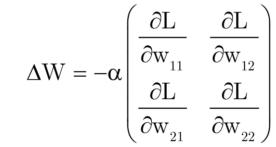


### Backpropagation

25

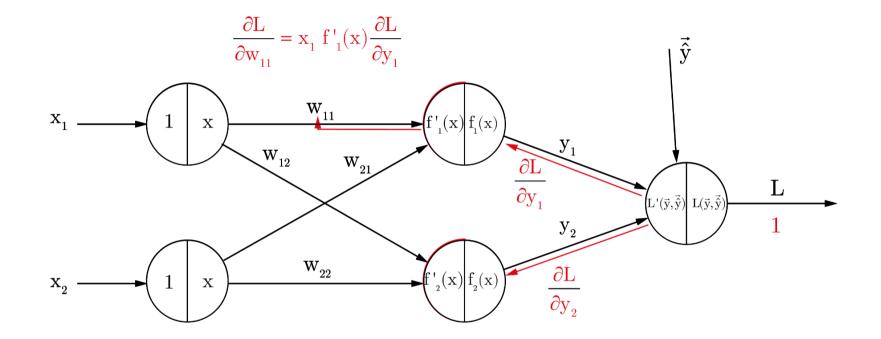


Remember we need  $\Delta W$  in the gradient descent:



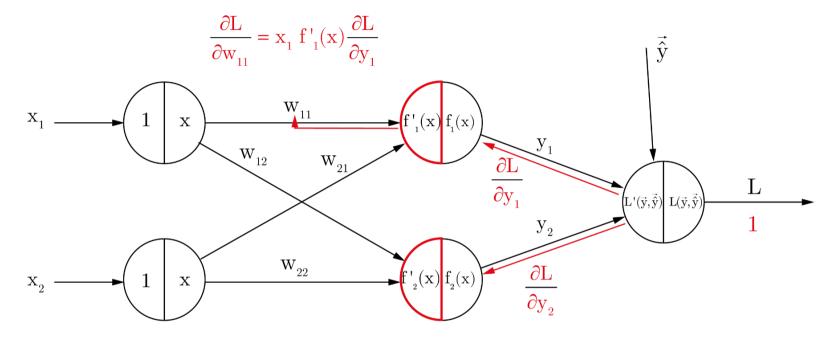
TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

## Backpropagation



## Backpropagation

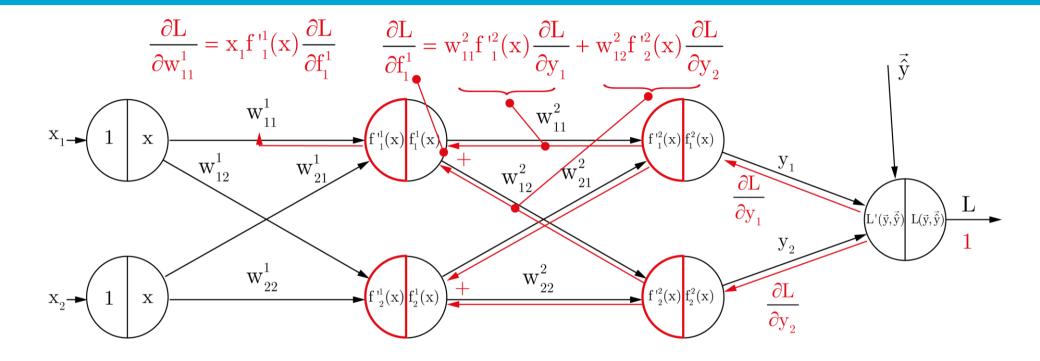
27



 $\frac{\partial L}{\partial w_{11}} = x_1 f'_1(x) \frac{\partial L}{\partial y_1} \qquad \qquad \frac{\partial L}{\partial w_{12}} = x_1 f'_2(x) \frac{\partial L}{\partial y_2} \qquad \qquad \frac{\partial L}{\partial w_{22}} = x_2 f'_2(x) \frac{\partial L}{\partial y_2} \qquad \qquad \frac{\partial L}{\partial w_{21}} = x_2 f'_1(x) \frac{\partial L}{\partial y_1}$ 

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

## Backpropagation with a hidden layer



 $\frac{\partial L}{\partial w_{11}^1} = x_1 f_1^{\prime 1}(x) \frac{\partial L}{\partial f_1^1}, \qquad \frac{\partial L}{\partial w_{12}^1} = x_1 f_2^{\prime 1}(x) \frac{\partial L}{\partial f_2^1}, \qquad \frac{\partial L}{\partial w_{21}^1} = x_2 f_1^{\prime 1}(x) \frac{\partial L}{\partial f_1^1}, \qquad \frac{\partial L}{\partial w_{22}^1} = x_2 f_2^{\prime 1}(x) \frac{\partial L}{\partial f_2^1}$ 

**TUDelft** Anh Khoa Doan | CFD IV | 17/05/2022

### About the loss functions in regression problem

- Loss function determines how the network is trained.
- For regression

- L2 or L1 error used. L2 preferred for smoother gradient
- For classification
  - Binary cross entropy loss
  - Categorical cross entropy loss

$$H_q = -\sum_{c=1}^M y_{o,c} \log(p_{o,c})$$

## Note on the Categorical Entropy Loss

 In classification problems, the cross entropy combines the error on the prediction and the probability associated to that prediction within a loss function.

Mathematically, this is:

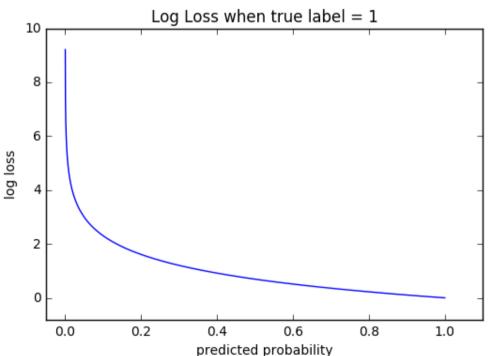
30

$$-\sum_{c=1}^{M} y_{o,c} \log(p_{o,c})$$

M: number of classes

y: binary indicator (0 or 1) if the class c is the correct classification for the sample o

```
p_{o,c}: predicted probability that sample o is of class c
```



## Structure of the Lecture

#### Introduction to Deep Learning

- 1. Motivation
- 2. Activation function and loss function
- 3. Feedforward neural network
- 4. Backpropagation algorithm
- 5. Training a neural network

#### • Exercises:

31

Introduction to tensorflow/keras, implementation of a neuron Implementation of a neural network for regression/classificiation

## Strategizing the training of a neural network is important

- Objective: get the best model as efficiently as possible
- Big data is not always the solution (or possible)
- How to spend the effort in the right direction
- Approaches

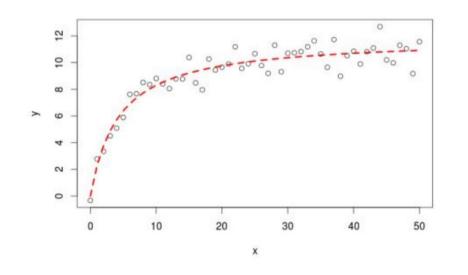
- Collect more data
- Diversify the available data
- Hyperparameter tuning
- Change the algorithm
- Try regularization techniques
- Try bigger/smaller architectures
- Change the architecture

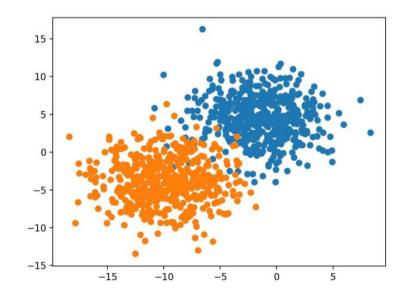
## Training a neural network 1. Data visualization

- (if possible) Always start by visualizing the data
  - Helps with spotting trends/outliers/peaks/...
  - Provides insights into pre-processing needed
  - Tools:

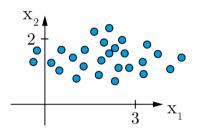
33

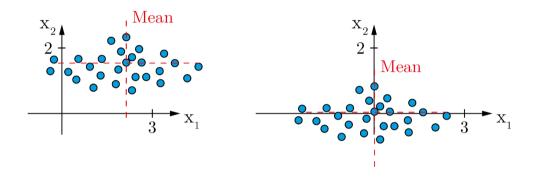
Histogram, scatter plot, box plot, violin plot, ...

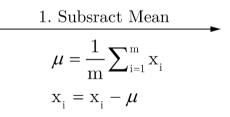




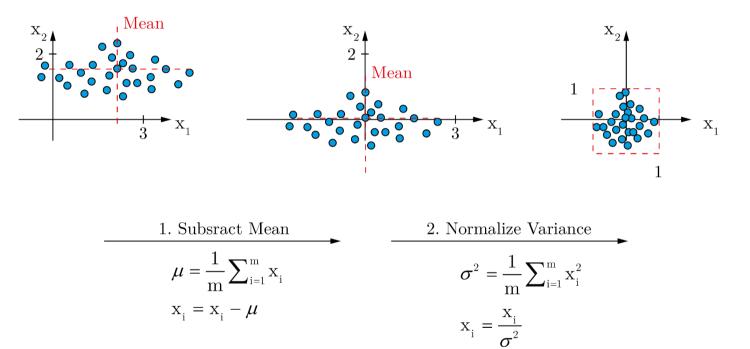
**TUDelft** Anh Khoa Doan | CFD IV | 17/05/2022



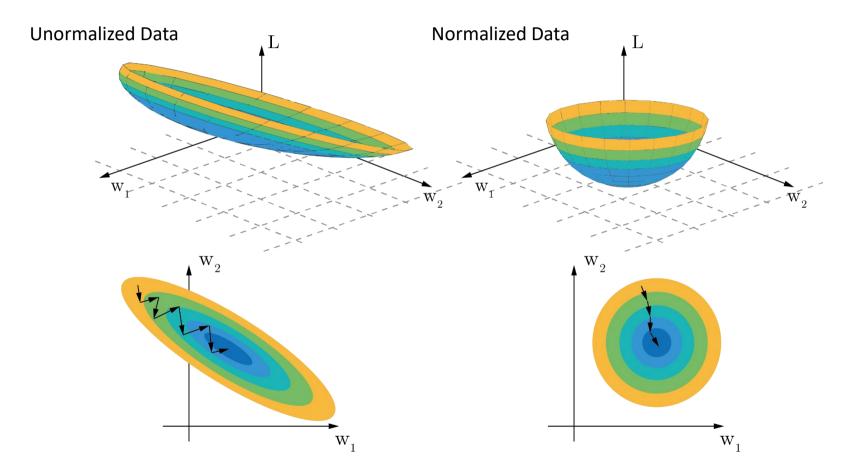




TUDelft Anh Khoa Doan | CFD IV | 17/05/2022



TUDelft Anh Khoa Doan | CFD IV | 17/05/2022



TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

### Training a neural network 3. Dataset split



- Dataset generally split into three parts:
  - Training data: Data used during the training phase to compute gradient and loss
  - Validation data: Data used simultaneously during training to assess the risk of overfitting
  - Test data: Data never used during training and used to assess the performance of the trained neural network

### Training a neural network 4. Network regularization – weight penalization

- Helps in avoiding overfitting of the model
- Discourage learning more complex model
- L2 regularization

39

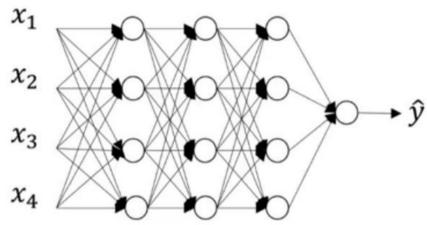
$$J(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{W}, \mathbf{B}) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{y}^{(i)}, \hat{\mathbf{y}}^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} \left\| \mathbf{w}^{(l)} \right\|_{F}^{2}$$
$$\left\| \mathbf{w}^{(l)} \right\|_{F}^{2} = \sum_{i=1}^{n(l)} \sum_{j=1}^{n(l-1)} w_{ij}^{2}$$

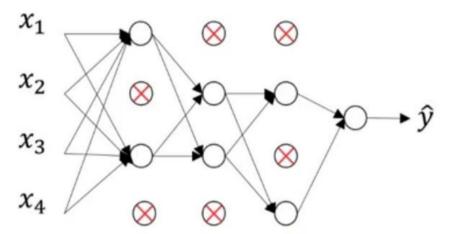
- Large  $\lambda$  penalizes large  $w_{ij}$
- (also L1 regularization)

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

## Training a neural network 4. Network regularization – Dropout layer

Dropout regularization

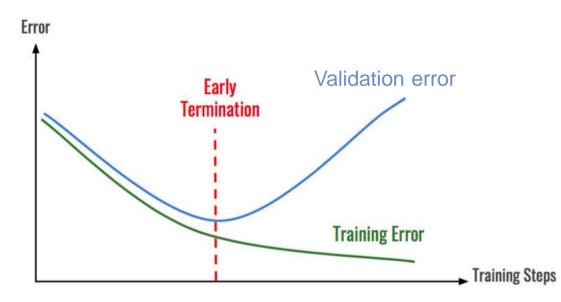




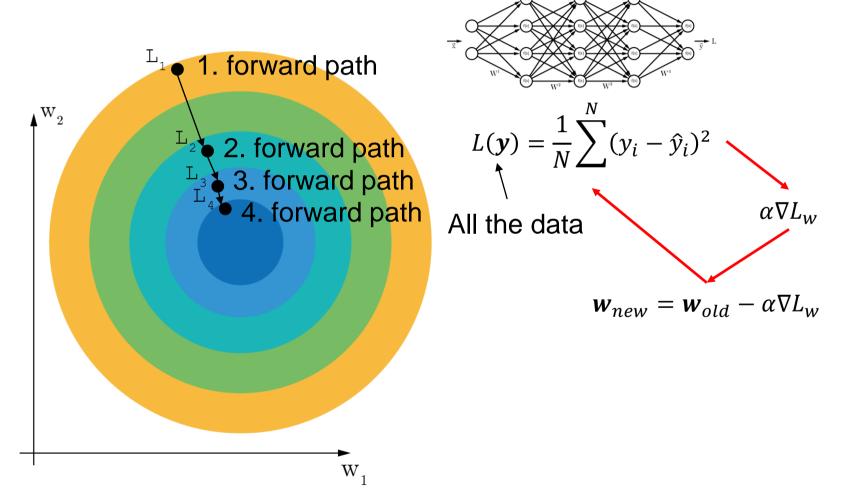
- Proportion of neurons are randomly "removed" during training for each batch
- Prevents excessive co-adaptation of the neurons
- Model cannot rely on a particular feature to make a prediction

## Training a neural network 4. Network regularization – Other

- Other regularization approaches:
  - Data augmentation (e.g. cropping, rotation, distortion in images)
  - Early stopping

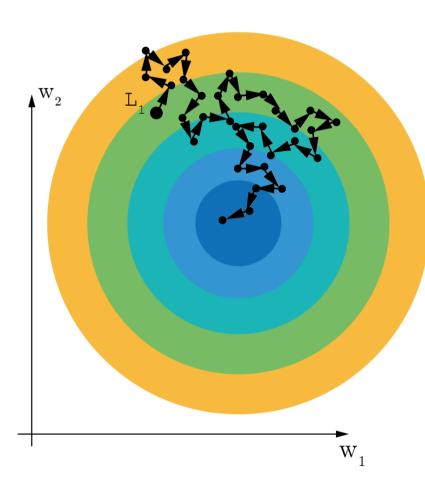


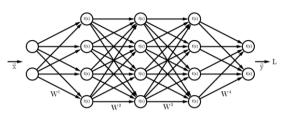
### Training a neural network 5. Optimization method – Gradient Descent



**TUDelft** Anh Khoa Doan | CFD IV | 17/05/2022

### Training a neural network 5. Optimization method – Stochastic Gradient Descent





Only use one random datapoint at a time

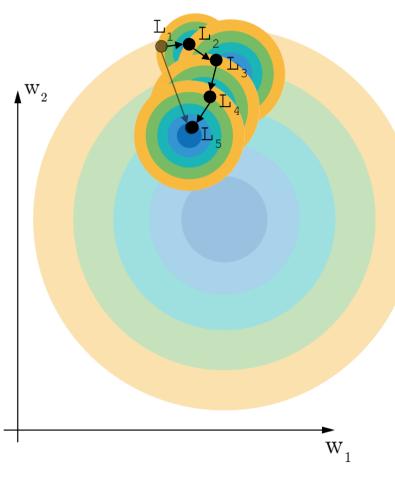
$$L(\mathbf{y}) = \sum_{w}^{1} \left( \mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)} \right)^{2} \rightarrow \alpha \nabla L_{w}$$

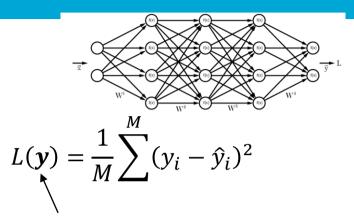
 $\boldsymbol{w}_{new} = \boldsymbol{w}_{old} - \alpha \nabla L_w$ 

 ⇒ Reduces compute time per optimisation step
 ⇒ But finding local minimums takes longer

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

### Batch Gradient Descent A Compromise





Split dataset in batches, => Trying to minimize global loss function with local cost functions

$$L(\mathbf{y}) = \frac{1}{M} \sum_{w_{new}}^{M} (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)})^2 \rightarrow \alpha \nabla L_w$$
  

$$\mathbf{w}_{new} = \mathbf{w}_{old} - \alpha \nabla L_w$$
  
Learning rate can also be adapted:  
ADAM optimizer

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

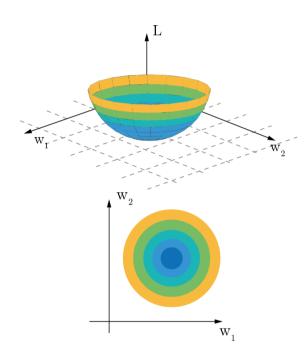
## Training a neural network 5. Optimization method – Terminology

• Training:

45

for n < max\_epochs:

- for sample in batch\_size Forward path Backward path Accumulate loss Update weights
- Epochs: how often the entire training dataset is used
- Batch: how many samples are used to compute L and apply the gradient descent step





- Neural Network are tools that can approximate any nonlinear function
- Computational Graph enables a straightforward gradient calculation
- Backpropagation algorithm allows to compute weight updates
- Overview of training process for neural networks

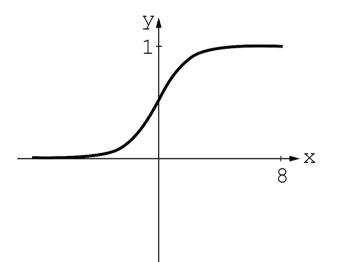
### Extra slides on activation functions

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

### Activation Functions Sigmoid

49

$$f(x) = \frac{1}{1 + e^{-x}}$$
$$f'(x) = f(x) (1 - f(x))$$

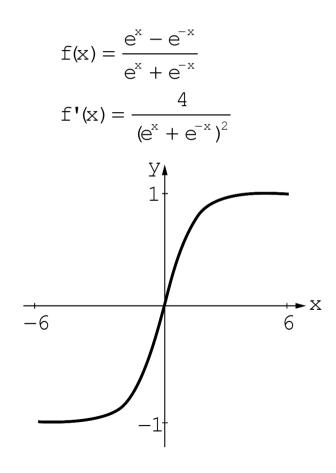


#### Two main problems:

- Causes vanishing gradient: Gradient nearly zero for very large or small x, kills gradient and network stops learning
- Output isn't zero centered: Always all gradients positive or all negativ, inefficient weight updates

### Activation Functions Hyperbolic tangent

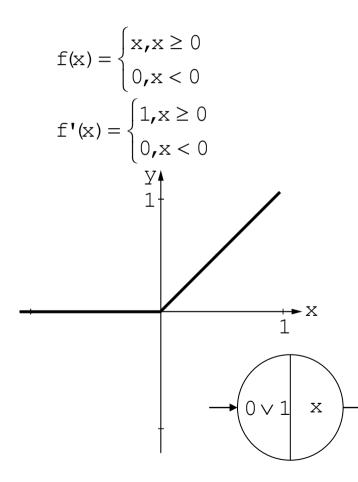
50



#### Better than sigmoid:

- Output is zero centered
- But still causes vanishing gradient

### Activation Functions Rectified Linear Unit (ReLU)



ReLU introducted in 1960s for visual feature extraction (Fukushima et al.) Popularised in 2010s (Nair & Hinton)

#### Most common activation function:

- Computationally efficient
- Converges very fast
- Does not activate all neurons at the same time

#### **Problem:**

- Gradient is zero for x<0 and can cause vanishing gradient -> dead relus may happen
- Not zero centered

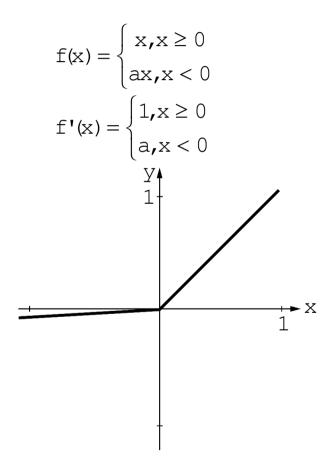
#### Usage:

- Mostly used in hidden layers
- Positive bias at init to get active ReLU

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

### Activation Functions Leaky ReLU

52



#### Improves on ReLU:

- Removes zero part of ReLU by adding a small slope. More stable then relu, but adds another paramter
- Computationally efficient
- Converges very fast
- Doesn't die
- Parameter a can also be learned by the network

### Activation Functions Exponential Linea Unit (ELU)

$$f(x) = \begin{cases} x, x \ge 0 \\ a (e^{x} - 1), x < 0 \end{cases}$$

$$f'(x) = \begin{cases} 1, x \ge 0 \\ ae^{x}, x < 0 \end{cases}$$

$$Y = \begin{cases} y \\ 1 \\ 1 \\ 1 \end{cases}$$

- Benefits of ReLU and Leaky ReLU
- Computation requires  $e^x$

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

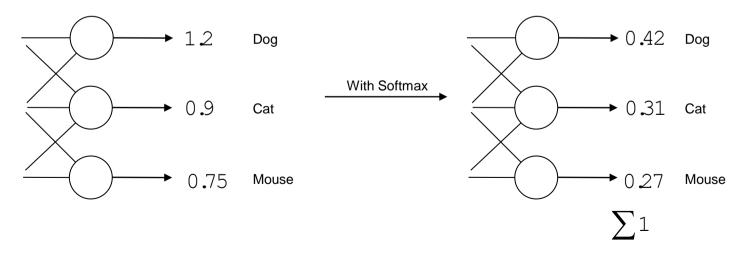
### Activation Functions Softmax

54

$$f(x) = \frac{e^{y_{i}}}{\sum_{k=1}^{K} e^{y_{k}}}$$

- Type of Sigmoid, handy for classification problems.
- Divides by the sum of all outputs, allows for percentage representation

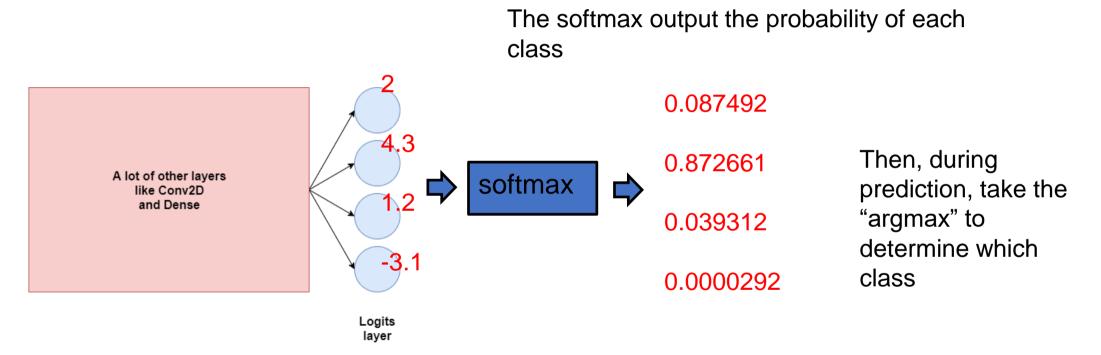
**Classifier:** 



**TUDelft** Anh Khoa Doan | CFD IV | 17/05/2022

# About the softmax function

Let's assume we need to classify between 4 classes



### Activation Functions Rule of thumb

- Sigmoid / Softmax for classifiers
- Sigmoid, tanh sometimes avoided due to vanishing gradient
- ReLU mostly used today, but should only be used in hidden layer
- Start with ReLU if you don't get optimal results go for LeakyReLU or ELU
- Often, linear layer as the last layer of the network if regression problem