## Machine Learning and Artificial Neural Networks



Anh Khoa Doan

## What you have seen previously

- So far: Uncertainty Quantification
  - Combines "knowledge by reasoning" (from numerical analysis) and "knowledge by data" (statistics)…
  - To get a better understanding (and prediction) of truth
- What we will see in the next two sessions
  - Emphasis on "knowledge by data"...
    - "Machine/Deep Learning"
  - ... and one of the form of combining Bayesian philosophy with machine learning

#### Structure of the Lecture

#### Introduction to Machine Learning (ML)

- 1. Drivers behind current ML
- 2. Position of ML in science
- 3. Classification of ML methods

#### Introduction to Neural Network

- 1. Linear regression and computational graph
- 2. Gradient descent
- 3. The neuron

### Data is becoming increasingly prevalent

In recent time: exponential explosion in data



**TUDelft** Anh Khoa Doan | CFD IV | 17/05/2022

moon

#### Data in aeronautical industry is also exploding

How much data is generated per flight?



Just from the engines: GE (2018): "around 1TB per engine per flight" Approximately 120,000 flights per day  $\rightarrow$  120 PB/day  $\rightarrow$  43.8EB/year



#### On a smaller (lab-)scale

- But actually, how much data produced by
  - One lab-experiment?





- One CFD simulation?





#### **Recent success in ML**

- "Big data" and "Machine Learning" techniques
  - Many success in exploiting/analysing "large dataset"



- Can we leverage "new" data-driven techniques (such as machine learning) for fluid mechanics research?
  - What makes this process "different"?

#### Structure of the Lecture

#### Introduction to Machine Learning (ML)

- 1. Drivers behind current ML
- 2. Position of ML in science
- 3. Classification of ML methods

#### Introduction to Neural Network

- 1. Linear regression and computational graph
- 2. Gradient descent
- 3. The neuron

#### The objective of ML is the obtention of the model



TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

9

Ø

## What is a good model?

• Fundamentally: Bayesian inference  $\frac{P(H|E) \propto P(E|H) \cdot P(H)}{P(E|H) \cdot P(H)}$  H: Hypothesis "curve fitting" example E: Evidence

Try to find the prior (hypothesis) that provides the best P(H|E)?



#### **Current Data Science Landscape**



2010: Modern ML Disciplines

## Machine learning in a nutshell: terminology



How to pick the right ML approach? Categorization of ML model based on the link of the *output* of the ML model with the target data/ loss function  $\mathcal{L}$ 

## Structure of the Lecture

#### Introduction to Machine Learning (ML)

- 1. Drivers behind current ML
- 2. Position of ML in science
- **3.** Classification of ML methods
- Introduction to Neural Network
  - 1. Linear regression and computational graph
  - 2. Gradient descent
  - 3. The neuron

## ML can be categorized on the role to perform

Available labelled (input,target) data

Partially labelled data

Loss function directly related to output of ML model: *Getting as close to the target data is the objective*  Loss function indirectly related to output of ML model

Labelled (input,target) data not available

Loss function not related to the role of ML model as no data available



## Structure of the Lecture

#### Introduction to Machine Learning (ML)

- 1. Drivers behind current ML
- 2. Position of ML in science
- 3. Classification of ML methods

#### Introduction to Neural Network

- 1. Linear regression and computational graph
- 2. Gradient descent
- 3. The neuron

# Neural network can be used as a basis for "any model"

Neural networks

16

 Inspired to reproduce the biological process of learning (late 1940s/early 1950s)



Universal approximator

"Can approximate any kind of nonlinear function"

Very strong expressivity

"Can represent a large variety of functions"

## Objective of AI/ML is to obtain a model

- Strength of neural networks: Universal approximators
  - Neural networks can approximate "any function" given a large enough number of neurons
  - BUT: no means of knowing beforehand what kind of network to use for that nor the appropriate weights
  - Neural networks are (generally) trained on input/target data
    - Approximate the underlying function existing in the data



TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

## Structure of the Lecture

#### Introduction to Machine Learning (ML)

- 1. Small history of AI
- 2. What is AI (and ML)?
- 3. Position of ML in science
- 4. Classification of ML methods

#### Introduction to Neural Network

- **1.** Linear regression and computational graph
- 2. Gradient descent
- 3. The neuron

#### Linear regression



## Computational Graph: some terminology



**TUDelft** Anh Khoa Doan | CFD IV | 17/05/2022

## Training of the neuron/graph

• "Training a model" is solving an optimization problem:



 $\rightarrow$  Many ways to solve this.

→ Focus on numerical gradient-based iterative optimizer

#### **Gradient descent**

- Minimization of *L* via gradient descent:
- Computation of  $-\nabla L$  (steepest descent)
- Update weights w in that direction by factor  $\alpha$  ("learning rate")
- Stop when optimization criteria are met (*N* iterations or threshold  $L < \epsilon$ )

$$\nabla L = \begin{pmatrix} \frac{\partial L}{\partial w_1} \\ \dots \\ \frac{\partial L}{\partial w_n} \end{pmatrix}_{\mathbf{w}} \qquad \mathbf{w}_{new} = \mathbf{w}_{old} - \alpha \nabla L$$



• To solve our optimization problem, we need the gradient of



**TUDelft** Anh Khoa Doan | CFD IV | 17/05/2022

$$\nabla L = \begin{pmatrix} \frac{\partial L}{\partial w_1} \\ \vdots \\ \frac{\partial L}{\partial w_n} \\ \frac{\partial L}{\partial b} \end{pmatrix}_{w,b,y} \qquad \frac{\partial L}{\partial w_i} \approx \frac{\delta L}{\delta w_i} = \frac{dL}{d\hat{y}} \cdot \frac{\delta \hat{y}}{\delta w_i} \qquad \frac{\partial L}{\partial b} \approx \frac{\delta L}{\delta b} = \frac{dL}{d\hat{y}} \cdot \frac{\delta \hat{y}}{\delta b}$$
$$L = \frac{1}{2} (\hat{y} - y)^2 \rightarrow \frac{dL}{d\hat{y}} = \hat{y} - y = \Delta y$$

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022



TUDelft Anh Khoa Doan | CFD IV | 17/05/2022



$$\nabla L = \begin{pmatrix} \Delta y \, u_i \\ \vdots \\ \Delta y \, u_n \\ 1 \end{pmatrix}_{w,b,y} = - \begin{pmatrix} 0.0145 \\ 0.145 \\ 0.0435 \\ 0.145 \end{pmatrix}$$

$$\boldsymbol{w}_{new} = \boldsymbol{w}_{old} - \alpha \nabla L$$

$$\begin{pmatrix} 0.55\\0.7\\2\\0.5 \end{pmatrix} + (0.5) \begin{pmatrix} 0.0145\\0.145\\0.0435\\0.145 \end{pmatrix} = \begin{pmatrix} 0.55725\\0.7725\\2.02175\\0.5725 \end{pmatrix}$$

**TUDelft** Anh Khoa Doan | CFD IV | 17/05/2022



## Limitation of gradient descent

 If the loss function is not well-behaved, the gradient descent may not converge appropriately:



**TUDelft** Anh Khoa Doan | CFD IV | 17/05/2022

28

Ŋ

### Structure of the Lecture

#### Introduction to Machine Learning (ML)

- 1. Small history of AI
- 2. What is AI (and ML)?
- 3. Position of ML in science
- 4. Classification of ML methods

#### Introduction to Neural Network

- 1. Linear regression and computational graph
- 2. Gradient descent
- **3.** Logistic regression and the neuron

# More complex tasks cannot be achieved with just linear regressors

- Up to now: linear distribution linear regression
- What about non-linear distribution? Or classification problem?



 $\rightarrow$  Need for nonlinear behaviour

# The neuron introduces nonlinearity through its activation function



31



Nonlinearity introduced with activation function :  $\hat{y} = f(\boldsymbol{w} \cdot \boldsymbol{u} + \boldsymbol{b})$ 



#### **Classification requires step-like function**



**TUDelft** Anh Khoa Doan | CFD IV | 17/05/2022

#### **Classification requires step-like function**



TUDelft Anh Khoa Doan | CFD IV | 17/05/2022

#### Logistic regression

- Used for binary classification (0/1)
- Consider  $u \in \mathbb{R}^n$  as input vector and y as the target class

With parameters  $w \in \mathbb{R}^n$  and  $b \in \mathbb{R}$ 

Linear output:  $\hat{y} = \mathbf{u} \cdot \mathbf{w} + b \rightarrow$  Cannot be used for binary classification Logistic output:  $\hat{a} = \sigma(\mathbf{u} \cdot \mathbf{w} + b)$ 

• Loss function:  $\mathcal{L}(y, \hat{a}) = -(y \log(\hat{a}) + (1 - y) \log(1 - \hat{a}))$ 



$$J(\boldsymbol{w}, b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(y^{(i)}, \hat{a}^{(i)})$$



#### Note on the log-loss function

• Let's start again from a linear regression, but with some error

$$y \approx \boldsymbol{w}^T \boldsymbol{x} + \boldsymbol{\epsilon}$$
$$\boldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma^2)$$

Assuming that x is also normally distributed, we can estimate likelihood

$$p(y|\mathbf{x}, \mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y - \mathbf{w}^T \mathbf{x})^2}{2\sigma^2}\right]$$

Log likelihood of the data:

$$\log \prod_{i} p(y^{(i)} | \mathbf{x}^{(i)}, \mathbf{w}) = \sum_{i} \left[ -\frac{1}{2} \log(2\pi\sigma^2) - \frac{(y^{(i)} - \mathbf{w}^T x^{(i)})^2}{2\sigma^2} \right]$$

Maximising log-likelihood ↔ Minimising MSE

#### Note on the log-loss function

- Consider our logistic model. Given input  $x^{(i)}$ , outputs  $a_i$ :
  - probability  $a(x^{(i)})$  for class 1
  - probability  $1 a(x^{(i)})$  for class 0
- We can estimate the likelihood for the entire dataset:

$$p(y|\mathbf{X}, \mathbf{w}) = \prod_{i} p(y^{(i)} | \mathbf{x}^{(i)}, \mathbf{w}) = \prod_{i} a_{i}^{y^{(i)}} (1 - a_{i})^{1 - y^{(i)}}$$

• And its negative log:

$$\sum_{i} (-y^{(i)} \log a_i - (1 - y^{(i)}) \log(1 - a_i))$$
  
 $\rightarrow$  To be minimized

#### **Classification:** example

Initial data

37



#### **Classification:** example

Initialization

38



#### **Classification:** example

After training

39



## Summary – What we have seen so far

- Aim of ML: data-driven model obtention
- Place of ML and ML problem
- Classification of ML tool

- Linear regression and the neuron
- Logistic regression