Machine Learning and
Artificial Neural Networks

Anh Khoa Doan

5
TUDelft



What you have seen previously

» So far: Uncertainty Quantification
— Combines “knowledge by reasoning” (from numerical analysis) and
“knowledge by data” (statistics)...
— To get a better understanding (and prediction) of truth

« What we will see In the next two sessions

— Emphasis on “knowledge by data”...
* “Machine/Deep Learning”

— ... and one of the form of combining Bayesian philosophy with
machine learning
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Structure of the Lecture

° Introduction to Machine Learning (ML)
1. Drivers behind current ML
2. Position of ML In science
3. Classification of ML methods

* |ntroduction to Neural Network
1. Linear regression and computational graph
2. Gradient descent
3. The neuron

TUDelft anh khoa Doan | CFD Iv | 17/05/2022 3



Data Is becoming increasingly prevalent

* In recent time: exponential explosion in data | |
Entire Netflix catalogue

Annual Size of the Global Datasphere 175 ZB ~500 million times

—

37 trillion

=
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Zetabytes
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—> Driven by “digitalization” Stacked:

100 ladders to the |
moon
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Data in aeronautical industry is also exploding

- How much data is generated per flight?

Just from the engines:

GE (2018): “around 1TB per engine per flight”
' ’ﬂ‘ Approximately 120,000 flights per day
=~ 120PB/day
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On a smaller (lab-)scale

» But actually, how much data produced by
— One lab-experiment?
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Recent success in ML

* “Big data” and “Machine Learning” techniques
— Many success in exploiting/analysing “large dataset”

- Can we leverage “new” data-driven techniques (such as

machine learning) for fluid mechanics research?
— What makes this process “different™?
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Structure of the Lecture

° Introduction to Machine Learning (ML)
1. Drivers behind current ML
2. Position of ML in science
3. Classification of ML methods

* |ntroduction to Neural Network
1. Linear regression and computational graph
2. Gradient descent
3. The neuron
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The objective of ML Is the obtention of the model

Scientific

method is o ) . .

currently mostly S5 1 Hypothetico- Ldata] _—

deductive s \ deductive p—— -

F = ma FPhysical | approach Data confirm
L mc;del ) \_ ) deduction hypothesis
hypothesis

Machine 4 ) hypOtheSiS

Learning is Inputs ML

an Inductive Al model |

process Ldata approach :
9 y deduction

Data are used to develop
the model Note: UQ combines both
approaches
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What Is a good model?

* Fundamentally: Bayesian inference PU/IE) « P(EIH) - P(F)  H: Hypothesis
“curve fitting” example PosteriorLikelihood Prior  E: Evidence
Try to find the prior (hypothesis) that provides the best P(H|E)?

 H:y=ax+b » Hiy=ax+b s Hiy =ax?* + bx + ¢

A |
\/ Good prior is key

.
>

E

E.’

P(E|H) large ]
(EIH) larg ** " P(E|H) small

=
>

My prior hypothesis is My prior hypothesis is not

supported by my supported by my Prior =>Likelihood
evidence. evidence. R
—>Confidence in prior. —~>Need to review my Posterior

prior

[Dehaene, S. (2020). How We Learn: Why Brains Learn Better Than Any Machine... for Now.
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Current Data Science Landscape

Statistical Analysis: Estimators, correlations,
unsupervised clustering

Machine Learning

Decision tree, artificial neural network, support
vector machines, supervised clustering,
reinforcement learning, ...

2010: Modern ML
Disciplines
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Machine learning in a nutshell: terminology

Prediction: y: Target data
u:. Inputs f ML m.odel ) y=F(u ) )
L - J L: Loss
T function
Training/Learning
oL
0P

How to pick the right ML approach?
Categorization of ML model based on the link of the output of
the ML model with the target data/ loss function £
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Structure of the Lecture

° Introduction to Machine Learning (ML)
1. Drivers behind current ML
2. Position of ML In science
3. Classification of ML methods

* |ntroduction to Neural Network
1. Linear regression and computational graph
2. Gradient descent
3. The neuron
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ML can be categorized on the role to perform

Available labelled (input,target)

_ Labelled (input,target) data not
data Partially labelled data

available
Loss function directly related to Loss function indirectly Loss function not related to the
output of ML model: related to output of ML role of ML model as no data

Getting as close to the target data model
IS the objective

‘ s ’ ] @e
I
R g 3 Optimization & Remforcement Dlmen5|onal|ty
1 J Polynomial, J J Linear control, Q-learning, Markov J POD/PCA,
trgg/SM,Rcli:ecr\lls’\llon Gau55|an process, GANs Genetic algorlthm process, deep RL, SR, KA By Autoencoder, self-
S organizing map, .
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Structure of the Lecture

° Introduction to Machine Learning (ML)
1. Drivers behind current ML
2. Position of ML In science
3. Classification of ML methods

* Introduction to Neural Network
1. Linear regression and computational graph
2. Gradient descent
3. The neuron
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Neural network can be used as a basis for "any

model”

°* Neural networks

 Inspired to reproduce the biological process of learning (late

1940s/early 1950s)

impulses carried
toward cell body

* Universal approximator

( .
axon nputs
nucleus %roiﬁa_"/j?:—— ; terminals
_
%\2& impulses carried
away from cell body
c

“Can approximate any kind of nonlinear function”

* Very strong expressivity

“Can represent a large variety of functions”
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ODbjective of AI/ML Is to obtain a model

e Strength of neural networks: Universal approximators
* Neural networks can approximate “any function” given a large enough number of neurons

* BUT: no means of knowing beforehand what kind of network to use for that nor the
appropriate weights

* Neural networks are (generally) trained on input/target data
* Approximate the underlying function existing in the data

Input . Neural Output
g Net

\ 4

Q

Exnlic
Relation
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Structure of the Lecture

* Introduction to Machine Learning (ML)
Small history of Al

What is Al (and ML)?

Position of ML in science
Classification of ML methods

W

* Introduction to Neural Network
1. Linear regression and computational graph
2. Gradient descent
3. The neuron
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Linear regression

(u,y): input/target data Simplest regression:
v, 9 1 y=y=fuwb)=u-w+b

© =2uiwi+b

i

Oy: prediction from our model ~ w: weights of the model

b: bias of the model

: > /y

) 4
©
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Computational Graph: some terminology

Forward pass
0.1

Information flow

D
' b
z o <:> W1 \7/& Training data
/O/OOO/ ]@ ;J /:s\z/ ;@: :@

. 1 12
L&, y) = §|Iy — 9|
0.01051125

TUDelft anh khoa boan | CFD Iv | 17/05/2022 20



Training of the neuron/graph

* “Training a model” is solving an optimization problem:

J / argmin L(J, y)
© w,b

Subjecttoy =w-u+b>b

— Many ways to solve this.

— Focus on numerical gradient-based iterative optimizer
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Gradient descent

° Minimization of L via gradient descent:

° Computation of —VL (steepest descent)

* Update weights w in that direction by factor a (“learning rate”)

* Stop when optimization criteria are met (N iterations or
threshold L < €)

dL
dwy

VL = Whew = Woig — aVL

own/ ,
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Gradient Descent and Computational Graph

* To solve our optimization problem, we need the gradient of

1, . 5
L=-@-y)
<:;> » Wy m Ll
—
(uy—Tws
oL
a_wl\ With the chain rule:
VL = 6:L aLzSL:dL.W oL 8L _dL &9
awn ow; Sw; dy Sw; ob " 6b _dy ob

\%/
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Gradient Descent and Computational Graph

E)L\ oL 8L dL &9 oL 8L dL &9
ow, ow;  Sw; dy Sw; ob &b dy &b
_| oL
vk T . 1(,\ )2 dL A
n = -y >z=9—y=A4y
ob / wpy
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Gradient Descent and Computational Graph

E)L\ oL 8L dL &7 oL 8L dL &7

ow, ow;  Sw; dy Sw; ob &b dy &b

V] = a'L S — . — ar. — W
_ y=fuwb)=u-w+b= ) uyw;+b
owy, i

l

oL
&b )
— \AER @ 5 e
S

oL / 5y 0 59 0
\ db w,b)y 5Wi aWi (Z wiWi o+ ) i Sh - b (2 u;w; + b) =1

v, =| 0L = ayu,
Ay w,b,y

w,, owy,
oL
\ 5/
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Gradient Descent and Computational Graph

5
b
W1\7A

Training
data

1.855
G

N 1 12
L@, y) =§|Iy— vl

0.01051125
Ay.ul- 0.0145 Woew = Woid — aVL
o | _ [ o145
Ay u, 0.0435 0.55 0.0145 0.55725
1/, 0.145 0.7 0.145 | _ [ 0.7725
Wy 2 | 7O 00435 | =\ 2.02175
0.5 0.145 0.5725
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Gradient Descent and Computational Graph

0.1 055725 P72 .
Training

<:> " W1
data
37795 2.00725
to—fi—{ = =
Oi?: 2021

. 1 ]2
S L(;v,;v)=§|Iy— vl
0.00002628125
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Limitation of gradient descent

* If the loss function is not well-behaved, the gradient descent may not
converae appropriatelv:

Local “ Jumping out

minimum ’ of minimum
vanishing Oscillating = %
gradient
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Structure of the Lecture

* Introduction to Machine Learning (ML)
Small history of Al

What is Al (and ML)?

Position of ML in science
Classification of ML methods

W

° Introduction to Neural Network
1. Linear regression and computational graph
2. Gradient descent
3. Logistic regression and the neuron
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More complex tasks cannot be achieved with just

linear regressors

° Up to now: linear distribution — linear regression

* What about non-linear distribution? Or classification problem?

- Need for nonlinear behaviour
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The neuron introduces nonlinearity through its

activation function

"1 o © Standar linear regression: Nonlinearity introduced
o . - with activation function :
@) y=zwiui+bi=w-u+b }7=f(w-u+b)
© i
- b Activation
! W1 Function

> f —»@

The Neuron
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Classification requires step-like function

Uz,

o © Binary classification
© o ° 7
o © ©
@)
o © 0

Uy

y=1
U, Uz
o © o ©
® o © © o Cy=0
o © o o ——> o © o o
@] o O
@) o O
ul ’[‘"1
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Classification requires step-like function

S Binary classification Sigmoid Function
T

Binary Step

_/

Undefined derivative!! g'

1 e*
f(x)={(1):§zg f(x)=1+e‘x=1+ex
ff&)=fA-f)
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Logistic regression

* Used for binary classification (0/1)

° Consider u € R™ as input vector and y as the target class

With parametersw € R"and b € R

Linear output: y = u - w + b - Cannot be used for binary classification
Logistic output: @ = o(u-w + b)

sigmoid

- G(Z) :1+le_°
* Loss function: L(y,ad) = —(ylog(a) + (1 —y)log(1 — a)) _ [

* Cost function:
. -
w,b) = — > £(y®,a®) j
i=1 - :
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Note on the log-loss function

* Let’s start again from a linear regression, but with some error
y=~wlx+e

e ~N(0,0%)
° Assuming that x is also normally distributed, we can estimate
likelihood
1 (y — wlx)?
p(ylx,w) = 5 XP T

Log likelihood of the data:

(1) _ (1)
logl_[p(y(‘) ‘x(‘) w) = Z [——log(Zna 2) — b x) ]

Maximising log- |Ike|lh00d o Mlnlmlsmg MSE
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Note on the log-loss function

* Consider our logistic model. Given input x*), outputs a;:
- probability a(x®) for class 1
- probability 1 — a(x®) for class 0

* We can estimate the likelihood for the entire dataset:
p(yIX, w) = Hp(ya)‘ X0, w) = 1—[ 21— gyt
* And its negativei log: i
z(_y(i) loga; — (1 — y(i)) log(1 — a;))
| - To be minimized
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Classification: example

Initial data
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Classification: example

Initialization
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Classification: example

After training
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Summary — What we have seen so far

* Aim of ML: data-driven model obtention
° Place of ML and ML problem

* Classification of ML tool

° Linear regression and the neuron

* Logistic regression
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