Machine Learning and Artificial Neural Networks

Anh Khoa Doan

What you have seen previously

- So far: Uncertainty Quantification
	- Combines "knowledge by reasoning" (from numerical analysis) and "knowledge by data" (statistics)…
	- To get a better understanding (and prediction) of truth
- What we will see in the next two sessions
	- Emphasis on "knowledge by data"…
		- "Machine/Deep Learning"
	- … and one of the form of combining Bayesian philosophy with machine learning

Structure of the Lecture

• Introduction to Machine Learning (ML)

- 1. Drivers behind current ML
- 2. Position of ML in science
- 3. Classification of ML methods

• Introduction to Neural Network

- 1. Linear regression and computational graph
- 2. Gradient descent
- 3. The neuron

Data is becoming increasingly prevalent

• In recent time: exponential explosion in data

 $\mathbf{\ddot{T}}\mathbf{U}\mathbf{D}\mathbf{e}$ If \mathbf{I} Anh Khoa Doan | CFD IV | 17/05/2022

 $\boldsymbol{\mathscr{A}}$

Data in aeronautical industry is also exploding

• How much data is generated per flight?

Just from the engines: GE (2018): "around 1TB per engine per flight" Approximately 120,000 flights per day \rightarrow 120 PB/day \rightarrow 43.8EB/year

 $\textsf{TUDelft}$ Anh Khoa Doan | CFD IV | 17/05/2022

On a smaller (lab-)scale

- But actually, how much data produced by
	- One lab-experiment?

– One CFD simulation?

Recent success in ML

- "Big data" and "Machine Learning" techniques
	- Many success in exploiting/analysing "large dataset"

- Can we leverage "new" data-driven techniques (such as machine learning) for fluid mechanics research?
	- What makes this process "different"?

Structure of the Lecture

• Introduction to Machine Learning (ML)

- 1. Drivers behind current ML
- **2. Position of ML in science**
- 3. Classification of ML methods

• Introduction to Neural Network

- 1. Linear regression and computational graph
- 2. Gradient descent
- 3. The neuron

The objective of ML is the obtention of the model

 $\tilde{\mathbf{T}}$ UDelft Anh Khoa Doan | CFD IV | 17/05/2022 9

9

 $\boldsymbol{\mathscr{F}}$

What is a good model?

• Fundamentally: Bayesian inference $P(H|E) \propto P(E|H) \cdot P(H)$ PosteriorLikelihood Prior E: Evidence H: Hypothesis "curve fitting" example

Try to find the prior (hypothesis) that provides the best $P(H|E)$?

Current Data Science Landscape

2010: Modern ML **Disciplines**

Machine learning in a nutshell: terminology

How to pick the right ML approach? Categorization of ML model based on the link of the *output* of the ML model with the target data/ loss function \mathcal{L}

 $\dot{\mathbf{T}}$ U \mathbf{D} elft Anh Khoa Doan | CFD IV | 17/05/2022 12

Structure of the Lecture

• Introduction to Machine Learning (ML)

- 1. Drivers behind current ML
- 2. Position of ML in science
- **3. Classification of ML methods**

• Introduction to Neural Network

- 1. Linear regression and computational graph
- 2. Gradient descent
- 3. The neuron

ML can be categorized on the role to perform

Available labelled (input,target) data

Partially labelled data

Loss function directly related to output of ML model: *Getting as close to the target data is the objective*

Loss function indirectly related to output of ML model

Labelled (input,target) data not available

Loss function not related to the role of ML model as no data available

Structure of the Lecture

• Introduction to Machine Learning (ML)

- 1. Drivers behind current ML
- 2. Position of ML in science
- 3. Classification of ML methods

• **Introduction to Neural Network**

- 1. Linear regression and computational graph
- 2. Gradient descent
- 3. The neuron

Neural network can be used as a basis for "any model"

• Neural networks

16

Inspired to reproduce the biological process of learning (late 1940s/early 1950s)

• Universal approximator

"Can approximate any kind of nonlinear function"

Very strong expressivity

"Can represent a large variety of functions"

Objective of AI/ML is to obtain a model

- Strength of neural networks: Universal approximators
	- Neural networks can approximate "any function" given a large enough number of neurons
	- BUT: no means of knowing beforehand what kind of network to use for that nor the appropriate weights
	- Neural networks are (generally) trained on input/target data
		- Approximate the underlying function existing in the data

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022 \blacksquare 17

Structure of the Lecture

• Introduction to Machine Learning (ML)

- 1. Small history of AI
- 2. What is AI (and ML)?
- 3. Position of ML in science
- 4. Classification of ML methods

• **Introduction to Neural Network**

- **1. Linear regression and computational graph**
- **2. Gradient descent**
- 3. The neuron

Linear regression

Computational Graph: some terminology

 $\hat{\mathbf{T}}$ UDelft Anh Khoa Doan | CFD IV | 17/05/2022 20

20

 $\boldsymbol{\mathscr{F}}$

Training of the neuron/graph

• "Training a model" is solving an optimization problem:

 \rightarrow Many ways to solve this.

→ Focus on numerical gradient-based iterative optimizer

Gradient descent

- Minimization of L via gradient descent:
- Computation of $-\nabla L$ (steepest descent)
- Update weights w in that direction by factor α ("learning rate")
- Stop when optimization criteria are met (N) iterations or threshold $L < \epsilon$) 4.0

$$
\nabla L = \begin{pmatrix} \frac{\partial L}{\partial w_1} \\ \vdots \\ \frac{\partial L}{\partial w_n} \end{pmatrix}_w \qquad \mathbf{w}_{new} = \mathbf{w}_{old} - \alpha \nabla L
$$

• To solve our optimization problem, we need the gradient of 1

 $\tilde{\mathbf{T}}$ U \mathbf{D} elft Anh Khoa Doan | CFD IV | 17/05/2022 23

23

 $\delta \hat{y}$

 δb

$$
\nabla L = \begin{pmatrix}\n\frac{\partial L}{\partial w_1} \\
\vdots \\
\frac{\partial L}{\partial w_n} \\
\frac{\partial L}{\partial b}\n\end{pmatrix}_{w, b, y} \approx \frac{\delta L}{\delta w_i} = \frac{dL}{d\hat{y}} \cdot \frac{\delta \hat{y}}{\delta w_i} \qquad \frac{\partial L}{\partial b} \approx \frac{\delta L}{\delta b} = \frac{dL}{d\hat{y}} \cdot \frac{\delta \hat{y}}{\delta b}
$$
\n
$$
L = \frac{1}{2} (\hat{y} - y)^2 \rightarrow \frac{dL}{d\hat{y}} = \hat{y} - y = \Delta y
$$

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022 24

 $\check{\mathbf{T}}\mathbf{U}\mathbf{D}\mathbf{e}$ Anh Khoa Doan | CFD IV | 17/05/2022 25

$$
\nabla L = \begin{pmatrix} \Delta y \ u_i \\ \vdots \\ \Delta y \ u_n \\ 1 \end{pmatrix}_{w,b,y} = - \begin{pmatrix} 0.0145 \\ 0.145 \\ 0.0435 \\ 0.145 \end{pmatrix}
$$

$$
w_{new} = w_{old} - \alpha \nabla L
$$

$$
\begin{pmatrix} 0.55 \\ 0.7 \\ 2 \\ 0.5 \end{pmatrix} + (0.5) \begin{pmatrix} 0.0145 \\ 0.145 \\ 0.0435 \\ 0.145 \end{pmatrix} = \begin{pmatrix} 0.55725 \\ 0.7725 \\ 2.02175 \\ 0.5725 \end{pmatrix}
$$

TUDelft Anh Khoa Doan | CFD IV | 17/05/2022 26

 $\boldsymbol{\mathscr{F}}$ $\hat{\mathbf{T}}$ UDelft Anh Khoa Doan | CFD IV | 17/05/2022 27

Limitation of gradient descent

• If the loss function is not well-behaved, the gradient descent may not converge appropriately:

 $\tilde{\mathbf{T}}$ U \mathbf{D} elft Anh Khoa Doan | CFD IV | 17/05/2022 28

28

 $\boldsymbol{\mathscr{F}}$

Structure of the Lecture

• Introduction to Machine Learning (ML)

- 1. Small history of AI
- 2. What is AI (and ML)?
- 3. Position of ML in science
- 4. Classification of ML methods

• **Introduction to Neural Network**

- 1. Linear regression and computational graph
- 2. Gradient descent
- **3. Logistic regression and the neuron**

More complex tasks cannot be achieved with just linear regressors

- Up to now: linear distribution linear regression
- What about non-linear distribution? Or classification problem?

 \rightarrow Need for nonlinear behaviour

The neuron introduces nonlinearity through its activation function

31

Nonlinearity introduced with activation function : $\hat{y} = f(w \cdot u + b)$

Classification requires step-like function

 $\boldsymbol{\mathscr{F}}$ $\tilde{\mathbf{T}}$ U \mathbf{D} elft Anh Khoa Doan | CFD IV | 17/05/2022 32

Classification requires step-like function

 $\boldsymbol{\mathscr{F}}$ $\tilde{\mathbf{T}}$ UDelft Anh Khoa Doan | CFD IV | 17/05/2022 33

Logistic regression

- Used for binary classification (0/1)
- Consider $u \in \mathbb{R}^n$ as input vector and y as the target class

With parameters $w \in \mathbb{R}^n$ and $b \in \mathbb{R}$

Linear output: $\hat{y} = \boldsymbol{u} \cdot \boldsymbol{w} + b$ \rightarrow Cannot be used for binary classification Logistic output: $\hat{a} = \sigma(\boldsymbol{u} \cdot \boldsymbol{w} + b)$

- Loss function: $\mathcal{L}(y, \hat{a}) = -(y \log(\hat{a}) + (1 y) \log(1 \hat{a}))$
- Cost function:

$$
J(\mathbf{w},b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(y^{(i)}, \hat{a}^{(i)})
$$

Note on the log-loss function

• Let's start again from a linear regression, but with some error

$$
y \approx \boldsymbol{w}^T \boldsymbol{x} + \epsilon
$$

$$
\epsilon \sim \mathcal{N}(0, \sigma^2)
$$

• Assuming that x is also normally distributed, we can estimate likelihood

$$
p(y|\mathbf{x}, \mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y - \mathbf{w}^T \mathbf{x})^2}{2\sigma^2}\right]
$$

Log likelihood of the data:

$$
\log \prod_{i} p(y^{(i)} | x^{(i)}, w) = \sum_{i} \left[-\frac{1}{2} \log(2\pi\sigma^2) - \frac{\left(y^{(i)} - w^T x^{(i)}\right)^2}{2\sigma^2} \right]
$$
\nMaximising local likelihood \leftrightarrow Minimising MSE

 M daximising log-likelihood \leftrightarrow Minimising MSE

 $\check{\mathsf{T}}\mathsf{U}\mathsf{D}\mathsf{e}\mathsf{I}\mathsf{f}\mathsf{t}\;$ Anh Khoa Doan | CFD IV | 17/05/2022 35

Note on the log-loss function

- Consider our logistic model. Given input $x^{(i)}$, outputs a_i :
	- probability $a(x^{(i)})$ for class 1
- probability $1 a(x^{(i)})$ for class 0
- We can estimate the likelihood for the entire dataset:

$$
p(y|\mathbf{X}, \mathbf{w}) = \prod_i p(y^{(i)} | \mathbf{x}^{(i)}, \mathbf{w}) = \prod_i a_i^{y^{(i)}} (1 - a_i)^{1 - y^{(i)}}
$$

• And its negative log:

$$
\sum_{i} (-y^{(i)} \log a_i - (1 - y^{(i)}) \log (1 - a_i))
$$

\n
$$
\rightarrow
$$
 To be minimized

 $\bm{\mathsf{TU}}$ Delf $\bm{\mathsf{t}}$ Anh Khoa Doan | CFD IV | 17/05/2022 36

Classification: example

Initial data

37

AND CHI Anh Khoa Doan | CFD IV | 17/05/2022 37

Classification: example

Initialization

38

AND CHI Anh Khoa Doan | CFD IV | 17/05/2022

Classification: example

After training

39

Anh Khoa Doan | CFD IV | 17/05/2022 39

Summary – What we have seen so far

- Aim of ML: data-driven model obtention
- Place of ML and ML problem
- Classification of ML tool

- Linear regression and the neuron
- Logistic regression