logo

Module IV: Numerical differentiation and integration

Derivatives and integrals are fundamental tools of physics and engineering. We look at their numerical approximation, discussing how to construct optimal formulae - in the sense of minimizing error for a given number of function evaluations (of f(x)). After this module you need never do an integral by hand again.

Files: mp4, svg

Supporting reader: Sections 6.1, 6.2

Corrections/Notes/FAQs:

Files: mp4, svg

Supporting reader: Section 6.2 (towards the end)

Corrections/Notes/FAQs:

Files: mp4, svg

Supporting reader: n/a

Corrections/Notes/FAQs:

Files: mp4, svg

Supporting reader: Section 6.4

Corrections/Notes/FAQs:

Files: mp4, svg

Supporting reader: Section 6.2.2

Corrections/Notes/FAQs:

Files: mp4, ipynb

Supporting reader: n/a

Corrections/Notes/FAQs:

Files: mp4, svg

Supporting reader: Section 7.1

Corrections/Notes/FAQs:

Files: mp4, svg

Supporting reader: Definition 7.1

Corrections/Notes/FAQs:

Files: mp4, svg

Supporting reader: Section 7.2

Corrections/Notes/FAQs:

Files: mp4, svg

Supporting reader: Section 7.4.2

Corrections/Notes/FAQs:

Files: mp4, svg

Supporting reader: n/a

Corrections/Notes/FAQs:

Files: mp4, svg

Supporting reader: Section 7.6

Corrections/Notes/FAQs:

Files: mp4, svg

Supporting reader:

Corrections/Notes/FAQs:

Files: mp4, ipynb

Supporting reader: n/a

Corrections/Notes/FAQs:

Files: mp4, svg

Supporting reader: Section 7.7

Corrections/Notes/FAQs:

Total time: 2:42:30

dr. R. Dwight ≤r.p.dwight@tudelft.nl≥ - 2021-06-28