Applied Numerical Analysis - AE2220-I - Quiz $#3$

Modules 5 and 6 – April, 2022

DO NOT OPEN UNTIL ASKED

Instructions:

- Make sure you have a machine-readable "Answer sheet".
- Use a black or blue pen to fill in the answer form.
- Write your name and student number on the answer sheet.
- Fill in the answer form neatly to avoid risk of incorrect marking.
- Each question has exactly one correct answer.
- Correct answers will receive 5 points, unanswered questions 1 point, incorrect answers 0 points.
- Graphical calculators of all kinds are not allowed; a scientific calculator is recommended.
- This quiz has 10 questions and 4 pages (2 sheets) in total.

Numerical solution of ODEs

Question 1 Consider the equation of the harmonic damped oscillator with an external time dependent forcing:

$$
x'' + x' + x = \sin(t^2)
$$

with the initial-conditions $x(0) = 0$ and $x'(0) = 2$. Applying forward-Euler method with a timestep $\Delta t = \frac{1}{2}$, what is the position x_1 and the velocity x'_1 after one iteration?

A: Unanswered B: $x_1 = x'_1 = 1.0$ C: $x_1 = x'_1 = 0.5$ D: $x_1 = x'_1 = 0.0$ E: $x_1 = x'_1 = -0.5$ F: $x_1 = x'_1 = -1.0$

Question 2 Consider the ODE $u' = -2cu$ with initial condition $u(0) = 1$ and constant $c > 0$. Using backward-Euler and $\Delta t = \frac{1}{2}$, what is the approximation of $u(4)$?

A: Unanswered B: $(1+c)^{-8}$ C: $(1 + c/2)^8$ D: $(1-c)^{-8}$ E: $(1 - c/2)^8$ $F: (c)^{-8}$ G: $(c/2)^8$

Question 3 We're concerned with solving the ODE $u' = f(u)$. Consider the scheme:

$$
u_{i+1} = u_i + \frac{3}{2}\Delta t f(u_i) - \frac{1}{2}\Delta t f(u_{i-1}),
$$

where u_i and u_{i-1} are known, and u_{i+1} is unknown. What is the *local*-truncation error of this scheme? [Hint: Use Taylor expansions of all terms; for the term $f(u_{i-1})$ expand first u_{i-1} , then f of the first two terms in the expansion.]

A: Unanswered B: Δt^{-1} C: Δt^0 D: Δt^1 E: Δt^2 F: Δt^3 G: Δt^4 H: Δt^5

Question 4 (Module 5 - ODEs) Consider the ODE $y' = -ay$ with $a > 0$. Using the forward-Euler scheme we can write:

$$
y_{i+1} = y_i + h(-ay_i).
$$

By writing the solution at y_{i+1} in terms of the initial condition y_0 , or otherwise, decide for what range of stepsize h is the scheme stable for this equation?

A: Unanswered B: Never stable C: Always stable D: $h > 0$ E: $0 < h < 1/a$ F: $0 < h < a$ G: $0 < h < 2/a$ H: $0 < h < 2a$

Question 5 Consider the following multi-stage time-stepping scheme:

$$
y_{n+1} = y_n + \frac{1}{2}h(k_1 + k_2),
$$

\n
$$
k_1 = f(y_n),
$$

\n
$$
k_2 = f(y_n + hk_1).
$$

This scheme is known as the 2nd-order Runge-Kutta method. Assume for simplicity that $f(y)$ = cy, with c a constant. Let $z = ch$. For what values of z is the scheme stable?

Question 6 Consider a general time-stepping scheme $y_{i+1} = Q(y_i)$ applied to an initial-value problem $y' = f(y)$ with exact solution $y(t)$. For example forward-Euler corresponds to $\mathcal{Q}(y)$ $y + hf(y)$. Let the scheme predict a discrete solution y_i at time t_i . Which of the following statements are true?

- (i) The global-truncation error at time t_i is $|y(t_i) y_i|$.
- (ii) The local-truncation error at time t_i is $|y'(t_i) Q(y(t_i))|$.
- (iii) If $y(t)$ is a degree-2 polynomial, and Q has local-truncation error proportional to h^3 , then $y(t_i) = y_i$ for any Q.
- A: Unanswered B: None C: (i) D: (ii) E: (i) and (ii) $F: (i)$ and (iii) G: (ii) and (iii) H: (i) , (ii) and (iii)

Numerical optimization

Question 7 Consider the following function:

$$
f(x,y) = -x^3 - y^2 + 3x - 3xy
$$

Newton's method for *optimization* is applied and the following point extremal point $(x, y) = (2, -3)$ is found. What can be said about this point? It is:

A: Unanswered B: A global maximum C: A global minimum D: A local maximum

- E: A local minimum
- F: A saddle-point
- G: Not extremal

Question 8 A rectangular cold storage box with *square* base of edge length l meters, height h meters and perfectly insulated top has a total volume of $10 \,\mathrm{m}^3$. All other sides are uninsulated. The goal is to find l such that heat loss is minimized.

Apply Newton's method for optimization to minimize a suitable objective function (assume heat loss is proportional to surface area). Perform the update in terms of l , starting with an initial estimate $l_0 = 1.0$. What is l_1 to two decimal places?

Question 9 Apply 1 iteration of the steepest descent method to the quadratic form

$$
Q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \cdot A \cdot \mathbf{x} + \mathbf{b}^T \cdot \mathbf{x} + c,
$$

where

$$
A = \left(\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array}\right), \quad b = \left(\begin{array}{c} -1 \\ 4 \end{array}\right), \quad c = 5.
$$

with the initial condition $x_0 = (1, 1)$. What is steepest descent direction?

Question 10 The steepest descent method is applied to the quadratic form

$$
Q(\boldsymbol{x}) = -\frac{1}{2}\boldsymbol{x}^T \cdot A \cdot \boldsymbol{x} - \boldsymbol{b}^T \cdot \boldsymbol{x} + c,
$$

where A , \boldsymbol{b} and c , are matrix, vector and scalar constants. Under what condition on the matrix A does the steepest descent method converge to the exact minimum in 1 iteration, from *any* initial condition x_0 ? [Hint: If the initial search line $x_0 + \alpha d_0$ includes the exact minimum of $Q(x)$, then the method will converge in 1 iteration.]

- A: Unanswered
- B: A is a multiple of the identity matrix
- C: A is diagonal D: A is symmetric
- E: A is positive definite
- F: A has only positive eigenvalues
- G: A is equal to \boldsymbol{bb}^T
- H: It always converges in 1 iteration

END OF EXAM