Applied Numerical Analysis – AE2220-I – Resit

Modules 1–6 — Thursday, 27 June 2019, 13:30–16:30

Name: Student number:

DO NOT OPEN UNTIL ASKED

Instructions:

- Make sure you have a machine-readable answer form.
- Write your name and student number on the answer form.
- Fill in the answer form neatly to avoid risk of incorrect marking.
- Fill in the version number of your quiz (see bottom right, 1-4) on the answer form.
- Use only pencil on the answer form, and correct with a rubber.
- Each question has exactly one correct answer.
- Correct answers will receive 5 points, unanswered questions 1 point, incorrect answers 0 points.
- This quiz has 24 questions and 8 pages in total.

Module 1: Taylor, Root-finding, Floating-point

Question 1 Consider the positive floating point number system $z = s \times 10^e$ where the base is 10. A total of 8 decimal digits are used to store s and e. What is the largest number that can be represented using this number-system if a machine epsilon of at least 1×10^{-6} must be achieved?

A: Unanswered	C: 9.999999×10^8	E: 9.999999×10^9	G: 1.0×10^9
B: 9.99999×10^8	D: 9.99999×10^9	F: 1.0×10^8	H: 1.0×10^{10}

Question 2 Write $f(x) = \sin x$ as a truncated Taylor series expansion about $x = 0$ with two non-zero terms. What is approximately the size of the first non-zero term in the truncation error at $x = \frac{\pi}{2}$?

Question 3 What is the approximation of the root of the function $f(x) = e^x - 1$, if three steps of repeated bisection are applied on a starting interval $[x_1, x_2] = [-3, 2]$? [Hint: To apply the method quickly it may help to roughly plot the function and spot the root.]

Question 4 A fixed-point iteration is applied to the function

$$
f(x) := e^{a(x-1)} - x,
$$

where $a \geq 0$ is a constant. This function has an exact root at $\tilde{x} = 1$ for all a. The specific iteration used is:

$$
x_{n+1} := \varphi(x_n) = e^{a(x_n - 1)},
$$

and the initial guess is extremely close to one: $x_0 = 1 + \epsilon$, where $\epsilon > 0$ we can choose as small as we like. Under what condition on a does this iteration converge to 1?

Module 2: Polynomial Interpolation and Regression

Question 5 Consider the function $f(x) = x^3$. Let $p_2(x)$ be a degree-2 polynomial which interpolates $f(x)$ at $x_0 = 0$, $x_1 = 1$ and $x_2 = 2$. We define the L₁-norm of the interpolation error on $[a, b]$ as:

$$
\varepsilon = \int_a^b |p_2(x) - f(x)| dx.
$$

What is the value of ε on the interval [0, 1]?

A: Unanswered B: 0 C: $-\frac{1}{3}$
D: $\frac{1}{3}$ E: $-\frac{1}{4}$
F: $\frac{1}{4}$ G: $-\frac{8}{3}$
H: $\frac{8}{3}$

Question 6 By Cauchy's theorem the interpolation error for a degree *n*-polynomial is

$$
R_n(f; x) := f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x),
$$

for suitable $\xi(x)$ and $\omega(\cdot)$. Based on this formula, for the interpolation problem of Question 5, what is the maximum interpolation error of any point in $[0, 1]$?

A: Unanswered B: [√] 3/9 C: 2 √ $3/9$ D: 3 V_{j} $3/9$ E: 4 √ $3/9$ F: 2 V_{j} $3/3$ G: $\sqrt{3}$ H: 4 √ $3/3$

Question 7 A data-set (x_i, f_i) containing $N + 1$ points with x_i all distinct, is approximated in 3 ways:

- a) Polynomial interpolation, giving $p(x)$
- b) Least-squares regression, giving $q(x)$
- c) Regression, minimizing min $\sum_{i=0}^{N} |f_i r(x_i)|$, giving $r(x)$

In the two regression cases, $q(x)$ and $r(x)$ are degree M polynomials with $M < N$. Which of the following is true in general?

A: Unanswered B: $p = q = r$ C: $p = q \neq r$ D: $p \neq q \neq r$ E: $p \neq q = r$

Question 8 Consider approximating a polynomial with a Fourier series. Using the basis functions

$$
\varphi_0(x) = 1, \quad \varphi_1(x) = \cos x, \quad \varphi_2(x) = \sin x,
$$

interpolate $f(x) = x^2$ using uniformly-spaced nodes on the interval [0, π]. What is the derivative of the interpolant at $x = 0$?

Question 9 An interpolating polynomial passes through the points

$$
\begin{array}{c|cc}\nx & 3 & 5 & x_2 \\
\hline\ny & 20 & 12 & 30\n\end{array}
$$

The polynomial is of the form:

$$
p(x) = a_0 + a_1(x - 3) + 2(x - 3)(x - 5).
$$

What are the two possible values for x_2 ?

EXAM CONTINUES ON NEXT PAGE

Module 3: Advanced interpolation

Question 10 Consider the function $f(x, y) = 1/(x+y+1)$. Evaluate this function at the nodes given in the table, and linearly interpolate (triangular patch). What is the value of the interpolant at the point $(x, y) = (1/2, 1/2)$?

Question 11 Which of the following functions is not a linear, quadratic or cubic spline?

A: Unanswered B:

C:

D:

E:

$$
f(x) = \begin{cases} 2x^3 - \frac{9}{2}x^2 + 5x - \frac{3}{2}, & x \in [0, 1] \\ 3x^3 - \frac{15}{2}x^2 + 8x - \frac{5}{2}, & x \in [1, 2] \end{cases}
$$

$$
f(x) = \begin{cases} 3x^3 - 8x^2 + 8x - 1, & x \in [0, 1] \\ 2x^3 - 5x^2 + 3x + 2, & x \in [1, 2] \end{cases}
$$

$$
f(x) = \begin{cases} 2x - 1, & x \in [0, 1] \\ 3x - 2, & x \in [1, 2] \end{cases}
$$

$$
f(x) = \begin{cases} 2x^2 - 2x + 1, & x \in [0, 1] \\ 3x^2 - 4x + 2, & x \in [1, 2] \end{cases}
$$

Question 12 Given the function values of $f(x, y) = x^2 + 2xy + \sqrt{y} + 1$ at six nodes (the nodes are given in the table), we want to make an interpolation using the radial function $\varphi(r) = e^{-r^2}$. The interpolation condition leads to a linear system of dimension 6, which can be written as $A a = f$, where a contains the unknown coefficients and f is the vector with given function values $\mathbf{f} = (f_1 \quad f_2 \quad f_3 \quad f_4 \quad f_5 \quad f_6)^T$. Compute the element $A_{5,6}$ of the matrix **A**.

Module 4: Numerical differentiation and Integration

Question 13 Consider the one-sided difference formula for the 1st-derivative of $f(x)$:

$$
f'(x) \approx \frac{1}{h} [3f(x) - 4f(x-h) + f(x-2h)].
$$

What is the order of the truncation error of this approximation?

A: Unanswered B: $\mathcal{O}(h)$ C: $\mathcal{O}(h^2)$ D: $\mathcal{O}(h^3)$ E: $\mathcal{O}(h^4)$ F: The approximation is exact. G: The approximation is not consistent (error $\mathcal{O}(1)$).

Question 14 A high-order central-difference formula for the 1st-derivative of $f \in C^6([a, b])$ is:

$$
f'(x_i) = \frac{f(x_i - 2h) - 8f(x_i - h) + 8f(x_i + h) - f(x_i + 2h)}{12h} + \epsilon
$$

where ϵ is the truncation error. What is the value of the term in ϵ involving $f^{(5)}(x_i)$?

A: Unanswered B: $-\frac{h^4 f^{(5)}(x_i)}{30}$ C: $-\frac{h^4 f^{(5)}(x_i)}{45}$ D: $-\frac{h^4 f^{(5)}(x_i)}{60}$ E: $-\frac{h^4 f^{(5)}(x_i)}{75}$ F: $-\frac{h^4 f^{(5)}(x_i)}{90}$

Question 15 What is the degree of precision of the quadrature formula

Question 16 Fourier quadrature. Until now we have considered quadrature rules that integrate polynomials of degree d exactly. Using the same principles derive a quadrature rule that integrates the functions $\phi = [1, \sin(x), \cos(x)]$ exactly on the interval $x \in [0, \pi]$. For nodes use $x = (0, \frac{\pi}{2}, \pi)$. What are the corresponding weights?

Module 5: Numerical solution of ODEs

Question 17 Consider a difference scheme $y_{i+1} = \mathcal{D}(y_i)$ applied to an initial-value problem with exact solution $y(t)$. Let the scheme predict a discrete solution y_i at time t_i . Which of the following statements are true?

- (i) The global error at time t_{i+1} is $|y(t_{i+1}) y_{i+1}|$.
- (ii) The local error at time t_{i+1} is $|\mathcal{D}(y(t_i)) y(t_{i+1})|$.
- (iii) If $y(t)$ is a polynomial of degree ≤ 1 , and $\mathcal D$ is at least 1st-order accurate, then $y(t_i) = y_i$ for all i.

Question 18 Which of the following numerical schemes are *implicit?*

(i) $y_{n+1} = y_n + \Delta t f(y_{n+1})$ (ii) $y_{n+1} = y_n + \Delta t f(y_n)$ (iii) $y_{n+1} = y_n + \frac{\Delta t}{2} (f(y_n) + f(y_{n+1}))$ (iv) $y_{n+1} = y_n + \frac{\Delta t}{2} (f(y_n) + f(y_{n-1}))$ (v) $y_{n+1} = y_n + \frac{\Delta t}{2} (f(y_n) + f(\hat{y})), \quad \hat{y} = y_n + \Delta t f(y_n)$ A: Unanswered B: (i) , (iii) $C: (ii), (iv)$ D: (ii), (iii), (iv) E: (ii), (iv), (v) F: (ii), (iii), (iv), (v) G: (iii), (iv), (v) H: (iv) , (v)

Question 19 Consider the linear ODE

$$
y'' + 2\lambda y' + \lambda^2 y = 0.
$$

For what real values of λ is the solution y stable?

A: Unanswered √ B: $\lambda < 1/\sqrt{2}$ C: $\lambda > 1/$ √ 2 D: $\lambda > 1$ E: $\lambda < 1$ F: $\lambda < 0$ G: $\lambda > 0$

Question 20 The ODE $u' = -5u$ with initial condition $u(0) = u_0$ is solved numerically using (a) the forward-Euler method (explicit), and (b) the backward-Euler method (implicit). In both cases the stepsize $\Delta t = 0.3$. Of the two methods, which are stable?

Module 6: Numerical optimization

Question 21 Consider the problem of finding the maximum of the function $f(x) = 2 \sin x - \frac{x^2}{10}$ 10 with an initial guess $x_0 = 5.0$. The generic update for Newtons method for optimization reads:

$$
x_{n+1} = x_n - \zeta(x_n).
$$

What is the expression for $\zeta(x)$ for the given function $f(x)$?

A: Unanswered C:
$$
\tan x
$$
 E: $\frac{20 \sin x - x^2}{20 \cos x - 2x}$
B: $x - \tan x$ D: $\frac{10 \cos x - x}{-1 - 10 \sin x}$ E: $\frac{20 \sin x - x^2}{20 \cos x - 2x}$

Question 22 You are jogging on a path which can be described by a curve $y = \log x$ (where the natural logarithm is used). Your car is parked at the origin $(0, 0)$. You want to stop jogging at the point closest to your car. Use Newton's method to minimize the squared distance to the car, with an initial guess of $x_0 = 1$. What is the value of x_1 ?

Question 23 Steepest descent for minimizing the function $f(x) : \mathbb{R}^N \to \mathbb{R}$ in N-dimensions requires the gradient $\nabla f(x)$ on each iteration i. Assuming the function $\nabla f(x)$ is not known explicitly, it can be approximated at $x_i \in \mathbb{R}^N$ by a difference rule (e.g. forward/backward/central differences). What is the *minimum* number of evaluations of $f(\cdot)$ required to approximate the gradient in this way?

Question 24 Quadratic forms always have a single stationary point, which may be a minimum, maximum, or saddle point. Consider the quadratic form

$$
Q(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T \cdot A \cdot \boldsymbol{x} + \mathbf{b}^T \cdot \boldsymbol{x} + c.
$$

Under what condition does this function have a **minimum**? [Hint: If you get stuck consider first 1d and then 2d examples.]

- A: Unanswered
- B: A is a multiple of the identity matrix
- C: A is diagonal
- D: A is symmetric
- E: A is positive definite
- F: $(-A)$ is positive definite
- G: A is equal to bb^T