Applied Numerical Analysis – AE2220-I – Quiz #3

Modules 5 and 6 - Thursday 4th April, 2019

DO NOT OPEN UNTIL ASKED

Instructions:

- Make sure you have a machine-readable answer form.
- Write your name and student number on the answer form.
- Fill in the answer form neatly to avoid risk of incorrect marking.
- Fill in the version number of your quiz (see bottom right, 1-4) on the answer form.
- Use only pencil on the answer form, and correct with a rubber.
- This quiz requires a calculator.
- Each question has exactly one correct answer.
- Correct answers will receive 5 points, unanswered questions 1 point, incorrect answers 0 points.
- This quiz has 10 standard questions and 4 pages (2 sheets) in total.

1 Numerical integration

Question 1 Consider the integral:

$$I = \int_0^{1/2} \sin(\pi x) \, dx$$

What is the Simpson's Rule approximation to this integral, using nodes at x = (0, 1/4, 1/2)?

A: Unanswered	C: 0.318	E: 0.321	G: 1.000
B: 0.159	D: 0.319	F: 1.001	H: 1.102

Question 2 What is the degree of precision (DoP) of the quadrature rule with two nodes:

	$\int_{-1}^{1} f(x) dx$	$dx \approx f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)?$	
A: Unanswered	C: 1	E: 3	G: 5
B: 0	D: 2	F: 4	H: 6

Question 3 Consider approximation of the two-dimensional integral:

$$I = \int_{-1}^{1} \int_{-1}^{1} f(x, y) \, dx \, dy$$

Given a quadrature rule in 1d $Q_x[f]$, a 2d rule can be obtained by applying the 1d rule in each variable successively. I.e.

$$F(y) = Q_x[f(x,y)], \text{ and then } I \simeq Q_y[F(y)],$$

whereby the first application of Q is to the variable x, and results in a function F of y only (x has been integrated out). Given the 1d-rule from Question 2, and the function $f(x, y) = x^2 + y^2$, what is the resulting approximation of I?

A: Unanswered	C: $2/3$	E: $9/5$	G: $10/3$
B: 1/3	D: $4/3$	F: 8/3	H: 16/3

2 Numerical solution of ODEs

Question 4 If the error introduced per step of an unspecified stable time integration scheme is $O(\Delta t^4)$ where Δt is the step-size, what can you say *in general* about the the error in the solution at a fixed time T?

A: Unanswered	C: $O(\Delta t^3)$	E: $O(\Delta t^5)$	G: $O(\Delta t^7)$
B: $O(\Delta t^2)$	D: $O(\Delta t^4)$	F: $O(\Delta t^6)$	H: $O(\Delta t^8)$

Question 5 Consider the ODE u' = -cu with initial condition u(0) = 1 and constant c > 0. Using backward Euler:

$$u_{i+1} = u_i + \Delta t f(u_{i+1})$$

and $\Delta t = \frac{1}{2}$, what is the approximation of u(4)?

A: Unanswered C: $(1 + c/2)^8$ E: $(1 - c/2)^8$ G: $(c/2)^8$ B: $(1 + c/2)^{-8}$ D: $(1 - c/2)^{-8}$ F: $(c/2)^{-8}$

Question 6 Consider a general time-stepping scheme $y_{i+1} = \mathcal{Q}(y_i)$ applied to an initial-value problem y' = f(y) with exact solution y(t). For example forward-Euler corresponds to $\mathcal{Q}(y) = y + hf(y)$. Let the scheme predict a discrete solution y_i at time t_i . Which of the following statements are true?

- (i) The global error at time t_i is $|y(t_i) y_i|$.
- (ii) The local error at time t_{i+1} is $|\mathcal{Q}(y(t_i)) y(t_{i+1})|$.
- (iii) If y(t) is a degree-1 polynomial, and Q is 1st-order accurate, then $y(t_i) = y_i$.

A: Unanswered	D: (ii)	G: (ii) and (iii)
B: None	E: (i) and (ii)	H: (i) , (ii) and (iii)
C: (i)	F: (i) and (iii)	

Question 7 Consider the following multi-stage time-stepping scheme:

$$y_{n+1} = y_n + \frac{1}{2}h(k_1 + k_2),$$

$$k_1 = f(y_n),$$

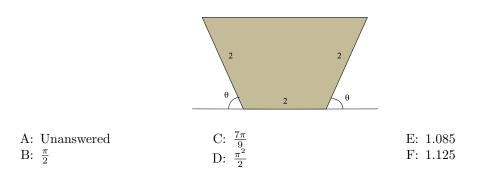
$$k_2 = f(y_n + hk_1).$$

This scheme is known as the 2nd-order Runge-Kutta method. Assume for simplicity that f(y) = cy, with c a constant. Let z = ch. For what values of z is the scheme stable?

A: Unanswered	E: $ 1 + z + \frac{1}{2}z^2 + \frac{1}{12}z^3 < 1$
B: $ 1 + z < 1$	F: $ 1 + z + \bar{z}^2 < 1^2$
C: $ 1 - z < 1$	G: $ 1+2z < 1$
D: $ 1+z+\frac{1}{2}z^2 < 1$	H: $ 1 + z + z^2 + \frac{1}{24}z^3 < 1$

3 Numerical optimization

Question 8 Consider the gutter-shape plotted below with base- and edges of length 2. Goal is to maximize the cross-sectional area of the gutter by varying the angle θ . Golden-section search is applied to solve this problem using an initial interval $I_0 = [0, \frac{\pi}{2}]$. Apply one iteration of this method to obtain I_1 . What is the midpoint of I_1 ? [Note: In G-S search on the interval [0, 1], the interior sample points are at $\frac{1}{\phi}$ and $1 - \frac{1}{\phi}$ with $\phi = \frac{1+\sqrt{5}}{2}$.]



Question 9 We want to approximate π . We know that

 $\pi = \operatorname{argmin}_{1 < x < 5} \left[\cos x \right].$

Apply 1 iteration of golden-section search. What is the *midpoint* of the interval after this single iteration?

A: Unanswered	C: 3.564	E: 3.764	G: 3.964
B: 3.142	D: 3.664	F: 3.864	

Question 10 A rectangular cold storage box with *square* base of edge length l meters, height h meters and perfectly insulated top has a total volume of 10 m^3 . All other sides are uninsulated. The goal is to find l such that heat loss is minimized.

Apply Newton's method for optimization to minimize a suitable objective function (assume heat loss is proportional to surface area). Perform the update in terms of l, starting with an initial estimate $l_0 = 1.0$. What is l_1 to two decimal places?

A: Unanswered	C: 1.46	E: 1.23	G: 2.46
B: 0.46	D: 1.19	F: 0.54	H: 1.54

END OF EXAM