Applied Numerical Analysis - AE2220-I - Quiz $#1$

Modules 1 and 2 – Monday 4th March, 2019

DO NOT OPEN UNTIL ASKED

Instructions:

- Make sure you have a machine-readable answer form.
- Write your name and student number on the answer form.
- Fill in the answer form neatly to avoid risk of incorrect marking.
- Fill in the version number of your quiz (see bottom right, 1-4) on the answer form.
- Use only pencil on the answer form, and correct with a rubber.
- Each question has exactly one correct answer.
- Correct answers will receive 5 points, unanswered questions 1 point, incorrect answers 0 points.
- This quiz has 10 questions and 5 pages (3 sheets) in total.

1 Computer representation of numbers

Question 1 Consider the positive floating point number system $s \times b^e$, where $b = 10$, s is a 6-digit significant $1.00000 \le s \le 9.99999$ and $-7 \le e \le 8$. What is the smallest *integer* strictly greater than 0, which is not representable by this system?

Question 2 The decimal (i.e. base $b = 10$) number system of Question 1 is to be implemented on a binary computer (i.e. base $b = 2$). How many bits are needed to be able to represent any number in the system? [Hint: Make a counting argument.]

2 Taylor series approximation

Question 3 What is the Taylor expansion of $cosh(x)$ about $x = 0$? Note: $cosh(x) = \frac{1}{2}(e^x + e^{-x})$.

Question 4 Using a Taylor expansion about zero we can write

$$
e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!}.
$$

Using the Lagrange remainder for a truncated Taylor series, express the infinite sum

$$
z = \sum_{i=10}^{\infty} \frac{2^i}{i!}
$$

as a single term involving the unknown $\xi \in [0, 2]$. [Note: By this method one can deduce that the Taylor series of e^x converges for all $x \in \mathbb{R}$ – a property which is not guaranteed for arbitrary functions.]

A: Unanswered C:
$$
z = e^{\xi}/11!
$$
 E: $z = e^{\xi}2^{11}/11!$ G: $z = \xi^{11}/11!$
B: $z = e^{\xi}/10!$ D: $z = e^{\xi}2^{10}/10!$ F: $z = \xi^{10}/10!$

3 Root-finding methods

Question 5 The recursive bisection method is guaranteed to converge to a root for continuous functions $(C^0([a, b]))$ only, however it *can be applied* whenever the function has a different sign at the left and right side of the interval. Consider a large (but finite) number of recursive bisection iterations applied to the function $f(x) = \frac{1}{x-\frac{1}{9}}$ on the initial interval $[a_0, b_0] = [0, 1]$. What will happen?

- A: Unanswered
- B: The method can not be applied.
- C: The method eventually samples f at the singularity and fails.
- D: The interval halves while containing the singularity at every step.
- E: The left interval is always chosen, and we converge to 0.
- F: The right interval is always chosen, and we converge to 1.

Question 6 The fixed-point iteration

$$
x_{i+1} = \frac{1}{2}(x_i + \frac{z}{x_i}),
$$

(known in antiquity as Heron's method) is a method for computing the square-root of z. Assume a starting guess x_0 is chosen such that the method converges. What value does the *convergence* rate approach as the error approaches zero? [Note: The convergence rate is the factor by which the error reduces at each iteration.]

Question 7 Newton's method is based on a linear approximation of f at the iterate x_i . Phaedrus conceives of an "improved" method based on a *quadratic* approximation of f at x_i . Assuming that the initial guess is $x_0 = 0$, what is the expression for x_1 with Phaedrus's method? [Note: Below f, f' and f'' are short for $f(x_0)$, $f'(x_0)$, and $f''(x_0)$ respectively.] [Hint: Use a Taylor expansion of f to find the approximating curve.

4 Polynomial interpolation

Question 8 Consider a polynomial interpolant $p_N(x)$ of the function

$$
H(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}
$$

on the interval $x \in [-1, 1]$, using a Chebychev grid with N nodes where N is even (avoiding a node at 0). Which of the following statements are true?

- 1. The function is discontinuous, so a polynomial interpolant doesn't exist.
- 2. By the Weierstrass theorem there exists a polynomial such that the interpolation error is less than $\epsilon > 0$ for any ϵ .
- 3. By Cauchy's interpolation error theorem the interpolation error is

$$
f(x) - p_N(x) = \frac{f^{(N+1)}(\xi)}{(N+1)!} \omega_{N+1}(x),
$$

where $\omega_{N+1}(x)$ is the nodal polynomial.

4. The maximum interpolation error approaches 0 as $N \to \infty$.

Question 9 Suppose that to interpolate a function $f(x)$, the Newton basis

$$
\pi_0(x) = 1
$$

\n
$$
\pi_1(x) = (x - x_0)
$$

\n...
\n
$$
\pi_N(x) = \prod_{i=0}^{N-1} (x - x_i)
$$

is chosen as a basis for \mathbb{P}_N , the space of polynomials of degree N. Given that the interpolation nodes are (x_0, x_1, \ldots, x_N) , what is the value of the determinant of the interpolation matrix $(\det(A))$? [Note: The answer can be compared with the determinant of the Vandermonde matrix.]

Question 10 Consider the function $f(x) = \sin(x)$. Assume we know the value of the function only at 3 equidistant points: $(x_0, x_1, x_2) = (-h, 0, h)$. We interpolate this function using a second degree polynomial. We know an upper bound for the interpolation error for a degree N polynomial from Cauchy's theorem:

$$
|f(x) - p_N(x)| \le \max_{\xi \in [a,b]} |f^{N+1}(\xi)| \frac{|\omega_{N+1}(x)|}{(N+1)!},
$$

where ω is the nodal polynomial. Based on this result, what is a bound on the error in the specific case above?

A: Unanswered
\nB:
$$
h^2
$$
 (18 $\sqrt{3}$)
\nC: $h^2/(4\sqrt{2})$
\nD: $h^3/18$
\nE: $h^3/(18\sqrt{3})$
\nE: $h^3/(9\sqrt{3})$
\nE: $h^4/(27\sqrt{3})$

END OF EXAM