Applied Numerical Analysis – Quiz #2

Modules 3 and 4

Name: ____

_____ Student number: _____

DO NOT OPEN UNTIL ASKED

Instructions:

- Make sure you have a machine-readable answer form.
- Write your name and student number in the spaces above, and on the answer form.
- Fill in the answer form neatly to avoid risk of incorrect marking.
- Fill in the version number of your quiz (see bottom right, A-D) on the answer form.
- Use only pencil on the answer form, and correct with a rubber.
- This quiz requires a calculator.
- Each question has exactly one correct answer.
- Correct answers will receive 5 points, unanswered questions 1 point, incorrect answers 0 points.
- This quiz has 10 questions and 4 pages in total.

1 Advanced Interpolation

Question 1 A cubic spline s(x) is used to approximate a function f on the interval [a, b]. The interval is divided into sub-intervals based on the grid of N + 1 points:

 $a = x_0 < x_1 < \dots < x_N = b,$

How many conditions must s(x) satisfy in total, to be an interpolant with appropriate smoothness? Besides that, to obtain a unique solution, some additional constraints have to be imposed. Which of the following pairs of constraints result in a unique s(x)?

	а. b. c. d.	$\begin{split} s(x_0) &= f_0, \\ s'(x_0) &= f'_0, \\ s''(x_0) &= f''_0, \\ s'(x_0) &= s'(x_n), \end{split}$	$s(x_n) = f_n$ $s'(x_n) = f'_n$ $s''(x_n) = f''_n$ $s''(x_0) = s''(x_n)$
A: Unanswered B: $4N$; a, b, c C: $4N + 2$; a, c, d D: $4N + 2$; b, c, d			E: $4N - 2$; b, c F: $4N - 2$; b, c, d G: $4N - 2$; a, b, c

Question 2 A cubic spline s(x) with natural boundary-conditions is differentiated once to obtain s'(x). Consider the statements:

1. s'(x) is piecewise quadratic

2. s'(x) is continous at the nodes

- 3. s'(x) is differentiable everywhere
- 4. s'(x) is linear on the 1st and last interval

Which of the above are true?

A: Unanswered	C: $1, 2$	E: 1, 2, 3	G: $1, 3, 4$
B: None	D: 1, 3	F: 1, 2, 4	H: All

Question 3 The function $f(x) = e^x + 2x - 4$ is approximated with least-squares regression, based on 21 samples of f at $x = \{0, 1, 2, ..., 20\}$. The regressor is a linear combination of the following 6 basis functions:

$$\begin{aligned} \varphi_0(x) &= 1, \quad \varphi_3(x) = e^x, \\ \varphi_1(x) &= x, \quad \varphi_4(x) = e^{2x}, \\ \varphi_2(x) &= x^2, \quad \varphi_5(x) = \sin x. \end{aligned}$$

What is the error in the regressor at x = 1/2?

A: Unanswered	C: 0.0001	E: 0.0003	G: 0.0005
B: 0	D: 0.0002	F: 0.0004	H: 0.0006

Question 4 Rectangular (R) or triangular (T) elements are used for patch interpolation. Consider two data sets: Set 1

$x_i \\ y_i$	$\begin{vmatrix} 0\\ 0 \end{vmatrix}$	$\begin{array}{c} 0.5 \\ 0 \end{array}$	$\begin{array}{c} 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0.5 \end{array}$	$\begin{array}{c} 0.5 \\ 0.5 \end{array}$	$\begin{array}{c}1\\0.5\end{array}$	0 1	$\begin{array}{c} 0.5 \\ 1 \end{array}$	1 1
f_i	0	0.3	1.2	0.7	0.2	1.5	0.8	0.6	0.9
x_i u_i	$\begin{vmatrix} 0\\0 \end{vmatrix}$	$0.2 \\ 0.1$	$0.3 \\ 0.7$	$0.3 \\ 0.9$	$0.5 \\ 0.5$	$0.6 \\ 0.4$	$0.8 \\ 0.7$	$0.9 \\ 0.9$	$ \begin{array}{c} 1 \\ 0.4 \end{array} $
$\frac{g_i}{f_i}$	0	0.2	1.0	0.4	0.2	0.6	1.1	0.7	1.3

Assume mixing R and T elements is not allowed. What kind of elements can be used for patch interpolation of Set 1 and Set 2, respectively?

A:	Unanswered	E: only T; R or T
B:	only R; only T	F: R or T; only R
C:	only R; R or T	G: R or T; only T
D:	only T; only T	H: R or T; R or T

Question 5 Least-squares regression can *overfit* data – to overcome this problem *regularization* is introduced. Given N+1 data points $(x_0, f_0), \ldots, (x_N, f_N)$, and a polynomial regressor of degree M: $\phi(x) = \sum_{j=0}^{M} a_j x^j$, the problem can be formulated as

$$\min_{a} \left[\sum_{i=0}^{N} (f_i - \phi(x_i))^2 + \lambda \sum_{j=0}^{M} a_j^2 \right].$$

Given the nodes $x_i = (2,3,4)$ with respective data values $f_i = (2,6,4)$, and assuming $\lambda = 2$, what are the coefficients a_0 and a_1 of the linear function that solve the regularized least-squares problem?

A:	Unanswered	C:	$a_0 =$	= 0.41,	a_1	=	1.11
B:	$a_0 = 2.57, a_1 = 0.43$	D:	$a_0 =$	= 1.79,	a_3	= (0.61

2 Numerical differentiation

Set 2

Question 6 In the governing equations of viscous flows (Navier-Stokes equations), second order *mixed* partial derivatives will appear. A second-order central-difference for the mixed derivative is:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{f(x+h,y+h) - f(x+h,y-h) - f(x-h,y+h) + f(x-h,y-h)}{4h^2} + \mathcal{O}(h^{\alpha})$$

which is based on step-size h in both the the x- and y-coordinates. What is the truncation error of this difference formula, i.e. the value of α ?

A: Unanswered	C: h^{-1}	E: h^1	G: h^3
B: h^{-2}	D: h^0	F: h^2	H: h^4

Question 7 Consider the viscous flow of air over a flat plate. At a given station in the flow direction x, the flow velocity, u, in the direction perpendicular to the plate (the y direction) is modelled by:

$$u = 482.2(1 - e^{-y/L})$$

where L = 0.01 m is the characteristic length. The viscosity coefficient $\mu = 1.7894 \times 10^{-5}$ Pa · s. Use the expression above to find u at discrete grid points equally spaced in the y-direction, with $\Delta y = 0.001$ m.

Use these discrete values to calculate the shear stress at the wall $\tau_w = \mu \left. \frac{\partial u}{\partial y} \right|_{y=0}$ using the second-order one sided difference rule:

$$u'(y_0) = \frac{-3u(y_0) + 4u(y_0 + \Delta y) - u(y_0 + 2\Delta y)}{2\Delta y} + O(\Delta y)^2.$$

What is the error of the calculated results compared with the exact value of τ_w (N/m²)?

Question 8 Given the values of a function f(x) are known at $x = x_0$, $x_0 - \frac{1}{2}h$, $x_0 + 2h$, and given the fact that:

$$f''(x_0) = a_0 f(x_0 - \frac{1}{2}h) + a_1 f(x_0) + a_2 f(x_0 + 2h) + O(h^n)$$

where $n \ge 1$, what are the values of the coefficients a_0 and a_1 and the order of convergence n?

A: Unanswered B: $a_0 = \frac{1}{h^2}, a_1 = 0, n = 2$ C: $a_0 = \frac{1}{h^2}, a_1 = 0, n = 1$ D: $a_0 = \frac{4}{5h^2}, a_1 = \frac{2}{h^2}, n = 1$ E: $a_0 = \frac{4}{5h^2}, a_1 = \frac{2}{h^2}, n = 1$ G: $a_0 = \frac{8}{5h^2}, a_1 = -\frac{2}{h^2}, n = 1$

Question 9 A high-order central-difference formula for the 1st-derivative of $f \in C^6([a, b])$ is:

$$f'(x_i) = \frac{f(x_i - h) - 8f(x_i - \frac{h}{2}) + 8f(x_i + \frac{h}{2}) - f(x_i + h)}{6h} + \frac{1}{6h}$$

Where ϵ is the truncation error. What is the value of the term in ϵ involving $f^{(5)}(x_i)$?

A: Unanswered B: $-\frac{h^4 f^{(5)}(x_i)}{120}$ C: $-\frac{h^4 f^{(5)}(x_i)}{240}$ E: $-\frac{h^4 f^{(5)}(x_i)}{960}$ D: $-\frac{h^4 f^{(5)}(x_i)}{480}$ F: $-\frac{h^4 f^{(5)}(x_i)}{1920}$

Question 10 Consider the central-difference formula to approximate $f'(x_0)$ at $x = x_0$ using f(x+h) and f(x-h). What is the largest term in the truncation error for this particular scheme?

A: UnansweredC: hf'E: $\frac{1}{3!}h^2f''$ G: $\frac{1}{3!}h^3f'''$ B: 2hf'D: $\frac{1}{2}hf'$ F: $\frac{1}{3!}h^2f'''$

 ϵ