Applied Numerical Analysis – Quiz #1

Modules 1 and 2 $% \left(1-\frac{1}{2}\right) =0$

Name: ____

_____ Student number: _____

DO NOT OPEN UNTIL ASKED

Instructions:

- Make sure you have a machine-readable answer form.
- Write your name and student number in the spaces above, and on the answer form.
- Fill in the answer form neatly to avoid risk of incorrect marking.
- Fill in the version number of your quiz (see bottom right, A-D) on the answer form.
- Use only pencil on the answer form, and correct with a rubber.
- This quiz requires a calculator.
- Each question has exactly one correct answer.
- Correct answers will receive 5 points, unanswered questions 1 point, incorrect answers 0 points.
- This quiz has 10 questions and 4 pages in total.

1 Root finding/Taylor approximation

Question 1 One way to approximate integrals is by first approximating the integrand by a truncated Taylor-series, and then integrating the series by hand exactly (it is just a polynomial). Using this method, approximate

$$\int_{-1}^{1} \exp(-x^2) \,\mathrm{d}x$$

by approximating the integrand with a truncated Taylor series about $x_0 = 0$, up to terms including x^4 , and then integrating the series. What is the value of the approximate integral?

A: Unanswered	C: 1.2333	E: 1.4333	G: 1.6333
B: 1.1333	D: 1.3333	F: 1.5333	H: 1.7333

Question 2 Newton's method is used to find the root of $f(x) = x^3$. Given that $e_{i+1} = Ke_i^n$, where e_i is the error at iteration *i*, what are *K* and *n*? [Hint: Starting from the definition of the Newton iteration, derive an expression for the error.]

Question 3 One way of approximating derivatives is by rearranging a Taylor approximation. The Taylor approximation of f(x) about x_0 is:

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{1}{2}f''(x_0)h^2 + \mathcal{O}(h^3),$$

where $h := x - x_0$. Assuming the value of f is known only at x_0 and x_1 , rearrange Taylor to get an approximate expression for $f'(x_0)$. What is the error in this approximation?

A: Unanswered C: $\mathcal{O}(x_1 - x_0)$ E: $\mathcal{O}(x_1 - x_0)^3$ G: $\mathcal{O}(x_1 - x_0)^5$ B: $\mathcal{O}(1)$ D: $\mathcal{O}(x_1 - x_0)^2$ F: $\mathcal{O}(x_1 - x_0)^4$

Question 4 Consider the two-variable problem consisting of two scalar equations:

$$x_1 + 2x_2 = 3,$$

$$2x_1^2 + x_2^2 - 5 = 0.$$

Using Newton's method starting with $x_0 = (1.5, 1.0)^T$, what is the estimate of the root after single iteration? [Hint: For multiple equations and variables the derivatives form a matrix.]

A:	Unanswered	E: $(1.5, 0.75)$
B:	Diverges after one step	F: $(1.0, 0.25)$
\mathbf{C} :	(1.5, 0.25)	G: $(1.0, 0.55)$
D:	(1.5, 0.5)	H: $(1.0, 0.75)$

Question 5 Consider the function $f(x) = x^2 + \log x$ which has a root somewhere in the interval $x \in (\frac{1}{2}, 1)$ (log is the natural logarithm). Four fixed-point iterations $x_{i+1} = \varphi(x_i)$ are applied with different choices of $\varphi(x)$:

1.
$$\varphi_1(x) = \sqrt{-\log x}$$

2.
$$\varphi_2(x) = e^{-x^2}$$

3. $\varphi_3(x) = x + x^2 + \log x$

4.
$$\varphi_4(x) = -\frac{\log x}{x}$$

Given an initial guess x_0 in the (open) interval $(\frac{1}{2}, 1)$, which of these methods are *guaranteed* to converge to the root?

A: Unanswered	C: 2	E: 3,4	G: $2,3,4$
B: None	D: 2,3	F: 1,2,3	H: All

2 Polynomial Interpolation

Question 6 Suppose that to interpolate a function f(x), the Newton basis in chosen as a basis for \mathbb{P}_n , the vector space of polynomials of degree n. Given that the interpolation nodes are (x_0, x_1, \ldots, x_n) , what is the value of the determinant of the interpolation matrix $(\det(A))$?

A: Unanswered	D: det(A) = $\prod_{i=1}^{n} \prod_{j=0}^{n} (x_i - x_j)$
B: $\det(A) = \sum_{i=1}^{n} \prod_{j=0}^{i} (x_i - x_j)$	E: det(A) = $\prod_{i=1}^{n} \prod_{j=0}^{i-1} (x_i - x_j)$
C: det(A) = $\prod_{i=1}^{n} \prod_{j=0, j \neq i}^{n} (x_i - x_j)$	F: det(A) = $\sum_{i=1}^{n} \prod_{j=0}^{n} (x_i - x_j)$

Question 7 Consider an unknown function f(x) which is sampled N + 1 times at distinct coordinates x_i . We notice that for these samples we are able to find interpolating functions $\phi_M(x)$ defined as

$$\phi_M(x) = \sum_{i=0}^M a_i x^i,$$

and this is possible for M = 1, and M = 2 and ... and M = N. Which **one** of the following options is true?

A: Unanswered	D: $f(x)$ is quadratic
B: $f(x)$ is constant	E: $a_0 = 0$ in all $\phi_M(x)$
C: $f(x)$ is linear	F: All $\phi_M(x)$ are identical

Question 8 The nodes $x_i = (0, x_1, 3)$ and corresponding data $f_i = (10, 11, 14)$ are given. For what value of x_1 does the interpolating polynomial p(x) satisfy $p(2) = 10 + \frac{7}{3}$?

A: Unanswered	C: 0.5	E: 1.5	G: 2
B: 0.25	D: 1	F: 1.75	$\operatorname{H:}\ 2.25$

Question 9 Consider polynomial interpolation of:

$$f(x) = 2x^3 + x^2 + 2x - 1$$

on the interval $x \in [-1, 1]$, using a Chebychev grid with 3 nodes. What is the exact error $\epsilon(x) = |f(x) - p(x)|$ at $x = \frac{1}{2}$?

A: Unanswered C: $\frac{1}{3}$ E: 1 G B: $\frac{1}{5}$ D: $\frac{1}{2}$ F: $\frac{4}{3}$	G: 0
--	------

Question 10 On February 6, 2018, SpaceX successfully conducted Falcon Heavy's maiden launch. The following data of the velocity of the rocket is given as a function of time:

Time(s)	0	6	8	15	20
Velocity(m/s)	0	36	64	95	124

Interpolating the 1st 3 data points with a polynomial, employing (i) a Newton basis, and (ii) a Lagrange basis, approximate the velocity at 7 s. What approximately are the values?

A: Unanswered	C: (i) 41, (ii) 42	E: (i) 48, (ii) 48	G: (i) 51, (ii) 50
B: (i) 37, (ii) 37	D: (i) 45, (ii) 47	F: (i) 49, (ii) 49	H: (i) 61, (ii) 64