Applied Numerical Analysis - Resit

3 hours — Modules 1–6

Name: ____

_____ Student number: _____

DO NOT OPEN UNTIL ASKED

Instructions:

- Make sure you have a machine-readable answer form.
- Write your name and student number in the spaces above, and on the answer form.
- Fill in the answer form **neatly** to avoid risk of incorrect marking.
- Fill in the version number of your quiz (see bottom right, A-D) on the answer form.
- Use only pencil on the answer form, and correct with a rubber.
- This quiz requires a calculator.
- Each question has exactly one correct answer.
- Correct answers will receive 5 points, unanswered questions 1 point, incorrect answers 0 points.
- This quiz has 24 questions and 9 pages in total.

Module 1: Taylor, Root-finding, Floating-point

Question 1 One way to approximate integrals is by first approximating the integrand by a truncated Taylor-series, and then integrating the series by hand exactly. Using this method, approximate

$$\int_0^1 \exp x \, \mathrm{d}x$$

by first approximating $\exp x$ with a truncated Taylor series about $x_0 = 0$, up to terms including x^3 , and then integrating the series. What is the value of the approximate integral?

A: Unan	swered	C:	$\frac{21}{24}$	E:	$\frac{41}{24}$
B: $\frac{11}{24}$		D:	$\frac{31}{24}$	F:	$\frac{51}{24}$

Question 2 Consider the positive floating point number system $z = s \times 10^e$ where the base is 10. A total of 8 decimal digits are used to store s and e. What is the largest number that can be represented using this number-system if a machine epsilon of at least 1×10^{-5} must be achieved?

A: Unanswered	C: 9.99999×10^5	E: 9.99999×10^7	G: 9.99999×10^9
B: 9.99999×10^4	D: 9.99999×10^6	F: 9.99999×10^8	H: 9.99999×10^{99}

Question 3 The function $f(x) = x^2 - 2x + 1$ has a root at $\tilde{x} = 1$. A modified version of Newton's method is used to find this root numerically. A single step of the method is:

$$x_{i+1} = x_i - C \frac{f(x_i)}{f'(x_i)}.$$

For which value(s) of C will this iteration have a *quadratic* rate of convergence for this particular f(x)? [Hint: Look for a C for which the fixed-point iteration's $\varphi'(x)$ is zero.]

A: Unanswered	C: $C = \frac{1}{4}$	E: $C = 1$	G: $C = 4$
B: $C = 0$	D: $C = \frac{1}{2}$	F: $C = 2$	H: $C > 10$

Question 4 Consider a fixed-point iteration for a 2-dimensional root-finding problem f(x) = 0, namely

$$\boldsymbol{x}_{i+1} = \varphi(\boldsymbol{x}_i),$$

where, as in the scalar case, the equation $\boldsymbol{x} = \varphi(\boldsymbol{x})$ is equivalent to $\boldsymbol{f}(\boldsymbol{x}) = 0$. Given that the error on iteration $i, \epsilon_i := \boldsymbol{x}_i - \tilde{\boldsymbol{x}}$ behaves like

$$\epsilon_{i+1} = \varphi'(\xi)\epsilon_i,$$

for some (unknown) ξ , under what conditions on φ' the Jacobian matrix of φ is this problem guaranteed to converge – for an initial guess close-enough to a root? [Note: λ_1 , λ_2 are the eigenvalues of φ' .]

A: Unanswered	D: $ \lambda_1 < 1$ and $ \lambda_2 < 1$	G: $\lambda_1 < 0$ and $\lambda_2 < 0$
B: $\lambda_1 \in \mathbb{R}$ and $\lambda_2 \in \mathbb{R}$	E: $\lambda_1 \neq 0$ or $\lambda_2 \neq 0$	H: $\lambda_1 > 0$ and $\lambda_2 < 0$
C: $ \lambda_1 < 1 \text{ or } \lambda_2 < 1$	F: $\lambda_1 < 0$ or $\lambda_2 < 0$	

Module 2: Polynomial Interpolation and Regression

Question 5 Interpolate a function f(x) with polynomials. You choose to use the monomial, the Newton and the Lagrange basis on the same grid (nodes) to get the interpolants $p_1(x)$, $p_2(x)$ and $p_3(x)$ respectively. What can be said about $p_1(x)$, $p_2(x)$ and $p_3(x)$?

A: Unana	swered	E: $p_2(x) \neq p_3(x)$
B: They	are <i>always</i> different	F: $p_2(x) \neq p_1(x)$
C: They	can be different	G: $p_1(x) \neq p_3(x)$
D: $p_1(x)$	$= p_2(x) = p_3(x)$	H: None of the above

Question 6 We wish to perform regression with the approximant $\phi(x) = a_0 + a_1 \ln(a_2 x)$. In order to fit the pairs of points $(x_i, f_i), i \in \{0, N\}$ we minimise the sum of squared-residuals,

$$\psi = \sum_{i=0}^{N} (\phi(x_i) - f_i)^2$$

by solving $\frac{\partial \psi}{\partial a} = 0$ for a_0, a_1, a_2 . Consider the statements:

- 1. The system of equations is linear.
- 2. The system of equations can be solved using the recursive-bisection method.
- 3. The system of equations can be solved using a fixed-point iteration.
- 4. The system of equations can be solved using the Newton method.

Which of the above are true?

A: Unanswered	C: 2	E: 3, 4	G: 1, 2, 4
B: 1	D: 2, 3	F: 1, 2, 3	

Question 7 During a wind tunnel experiment, the temperature is measured on the stagnation point of an airfoil. The following set of measurement data (as a function of the time) is available:

t [s]	T [deg]
1	13.1
4	19.7
9	21.3
12	22.5

The measurement data of the temperature (in degrees) has to be fitted with the following function:

$$T(t) = a_1 \cdot \left(\frac{1}{6+e^{-2t}} + \frac{1}{t+7}\right) + a_2 \cdot \sqrt{t}$$

Note that the initial temperature is known and equal to *exactly* 7 deg. Use a combination of interpolation and regression to approximate the data. What is the value of a_1 ?

A: Unanswered
 C:
$$a_1 = \frac{49}{2}$$
 E: $a_1 = \frac{69}{2}$

 B: $a_1 = \frac{39}{2}$
 D: $a_1 = \frac{59}{2}$
 F: $a_1 = \frac{79}{2}$

Question 8 Consider the function $f(x) = \cos(x - \frac{\pi}{2})$. Assume we know the value of the function only at 3 equidistant points: $(x_0, x_1, x_2) = (-h, 0, h)$. We interpolate this function using a second degree polynomial. We know an upper bound for the interpolation error for a degree N polynomial from Cauchy's theorem:

$$|f(x) - p_N(x)| \le \max_{\xi \in [a,b]} |f^{N+1}(\xi)| \frac{|\omega_{N+1}(x)|}{(N+1)!},$$

where ω is the nodal polynomial. Based on this result, what is a bound on the error in the specific case above?

A:	Unanswered	D: $h^3/18$
B:	h^2	E: $h^3/(9\sqrt{3})$
C:	$h^2/(4\sqrt{2})$	F: $h^3/(18\sqrt{3})$

Module 3: Advanced interpolation

Question 9 Which of the following are shape functions (i.e. basis functions) of a linear interpolator on the triangle in 2d, with vertices $(x_1, y_1) = (1, 1), (x_2, y_2) = (1, 3), \text{ and } (x_3, y_3) = (3, 1)$? [Note: Shape functions must take the value 1 at one vertex, 0 at others.]

A:	Unanswered	D. $\frac{1}{1}$ [1 m mu] [1 1 1]
B:	$\frac{1}{3} \begin{bmatrix} 1 & x & y \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix}$	$\begin{array}{c} D : -\frac{1}{4} \begin{bmatrix} 1 & x & xy \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \end{bmatrix}$
C:	$\begin{bmatrix} 1 & 3 & 1 \\ -\frac{1}{2} \begin{bmatrix} 1 & x & y \end{bmatrix} \cdot \begin{bmatrix} -4 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$	E: $\frac{1}{2} \begin{bmatrix} 1 & xy & x \end{bmatrix} \cdot \begin{bmatrix} 4 & -1 & -1 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$

Question 10 Consider the function f(x, y) = 3/(x + y + 1). Evaluate this function at the nodes given in the table, and linearly interpolate (triangular patch). What is the value of the interpolant at the point (x, y) = (1/2, 1/2)?

		$i \mid 1 2 3$	
		$x_i 0 1 1$	
		$g_i \mid 0 0 1$	
A: Unanswered	C: $\frac{1}{2}$	E: $\frac{3}{2}$	G: $\frac{5}{2}$
B: 0	D: 1	F: 2	H: 3

Question 11 We interpolate f(x, y) at N + 1 points (x_i, y_i) , all lying on a circle of radius R, using radial basis-function interpolation, with the radial function $\phi(r) = \exp(-r^4)$. The resulting interpolant takes the value M at the center of the circle. What is the sum of the unknown coefficients of the radial-basis interpolant, $\sum_{i=0}^{N} a_i$?

A: Unanswered	E: $M \exp(R^4)$
B: <i>N</i>	F: $M \exp(-R^4)$
C: $M \exp(R^2)$	G: $\exp(-NR^4)$
D: $M \exp(-R^2)$	H: Insufficient information

Module 4: Numerical differentiation and Integration

Question 12 Given the following numerical differentiation schemes:

$$\begin{aligned} f'(x_0) &= \frac{f(x_0 + h) - f(x_0)}{h} + O(h) \\ f'(x_0) &= \frac{f(x_0) - f(x_0 - h)}{h} + O(h) \\ f'(x_0) &= \frac{f(x_0 + h) - f(x_0 - h)}{2h} + O(h^2) \\ f'(x_0) &= \frac{1}{2h} \Big[-3 f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \Big] + O(h^2) \\ f'(x_0) &= \frac{1}{2h} \Big[3f(x_0) - 4f(x_0 - h) + f(x_0 - 2h) \Big] + O(h^2) \\ f'(x_0) &= \frac{1}{12h} \Big[f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h) \Big] + O(h^4). \end{aligned}$$

Use one of these formulas to determine, as accurately as possible, an approximation for f'(0.0) using only the data in the following table:

What is the value of the approximation?

A: UnansweredC:
$$-\frac{2}{10}$$
E: 0G: $\frac{2}{10}$ B: $-\frac{3}{10}$ D: $-\frac{1}{10}$ F: $\frac{1}{10}$ H: $\frac{3}{10}$

Question 13 Given the numerical differentiation schemes and data in Question 12, use one of these formulas to determine, as accurately as possible, an approximation for f'(0.4). What is this approximation?

A: UnansweredC:
$$-\frac{2}{10}$$
E: 0G: $\frac{2}{10}$ B: $-\frac{3}{10}$ D: $-\frac{1}{10}$ F: $\frac{1}{10}$ H: $\frac{3}{10}$

Question 14 Consider the following integral:

$$I = \int_0^1 \sin(\pi x) \,\mathrm{d}x$$

approximated by the trapezoidal rule. How many sub-intervals does the interval [0, 1] need to be divided into to evaluate I with an error $< 1 \times 10^{-2}$?

Question 15 Consider the following quadrature rule:

$$\int_{-1}^{1} f(x) \, \mathrm{d}x \simeq a_1 f(-1) + 4f(x_2) + a_3 f(1)$$

What is the absolute value of x_2 if the degree of precision of the quadrature rule is 2?

 A: Unanswered
 C: $\sqrt{1/3}$ E: $\sqrt{2/3}$

 B: 0
 D: $\sqrt{1/2}$ F: 1

Question 16 Consider the following differentiation rule, where h represent the length of the discretization interval:

$$D[f](x_i) = \frac{1}{2h} \left[af(x_i) + 4f(x_{i+1}) + cf(x_{i+2}) \right].$$

What values of a and c are needed order to obtain a second-order accurate (i.e. truncation-error $\sim O(h^2)$) scheme?

A:	Unanswered	C: -3 and 1	E: -3 and 1
B:	-3 and -1	D: -1 and -3	F: -3 and 3

Module 5: Numerical solution of ODEs

Note: Throughout this quiz we consider the standard form of the ODE to be:

$$y'(t) = f(y(t)).$$

Question 17 Consider the system of two non-linear first-order ODEs

$$z_1' = z_2$$
 $z_2' = -\frac{g}{l}\sin(z_1)$

describing an ideal pendulum, in which z_1 is the phase angle and z_2 is its time derivative. Use forward-Euler and the initial condition $(z_1^{(0)}, z_2^{(0)}) = (\frac{\pi}{2}, 0)$ (superscripts indicate the timestep). Assume $\frac{g}{l} = 10$. What is the value of $(z_1^{(1)}, z_2^{(1)})$ if $\Delta t = 0.001$?

A: Unanswered C:
$$(\pi/2, 0.01)$$
 E: $(-\pi/2, 0.01)$ G: $(0, \pi/2)$
B: $(\pi/2, -0.01)$ D: $(-\pi/2, -0.01)$ F: $(0, -\pi/2)$

Question 18 If the error introduced per step of an *unspecified* stable time integration scheme is $\mathcal{O}(\Delta t^4)$, what can you say about the the error in the solution at a fixed time T?

A: Unanswered	C: $\mathcal{O}(\Delta t^1)$	E: $\mathcal{O}(\Delta t^3)$	G: $\mathcal{O}(\Delta t^5)$
B: Not enough data	D: $\mathcal{O}(\Delta t^2)$	F: $\mathcal{O}(\Delta t^4)$	H: $\mathcal{O}(\Delta t^6)$

Question 19 Consider *numerical stability* of the 2-step Adam-Bashford scheme, given by:

$$y_{i+2} = y_{i+1} + \frac{\Delta t}{2} [3f_{i+1} - f_i]$$

As usual define $z = \lambda \Delta t \in \mathbb{C}$. Derive the discrepency equation, and solve it using solutions of the form $\delta_i = \beta^i$. What is the equation relating β and z that defines the stability region? [Hint: If you don't remember how to get the discrepency equation, use $f_i = \lambda y_i$ in the difference scheme.]

A: Unanswered C: $\beta - 1 + z - 3z = 0$ E: $\beta - (1 + \frac{3}{2}z)\beta + \frac{z}{2} = 0$ B: $\beta^2 - (1 + \frac{3}{2}z)\beta + \frac{z}{2} = 0$ D: $\beta^2 + (1 + 3z)\beta + z = 0$ F: $\beta^2 - (1 - \frac{3}{2}z)\beta + \frac{1}{2} = 0$

Question 20 Consider the following scheme:

$$y_{n+1} = y_n + \Delta t[\alpha f(y_n) + (1 - \alpha)f(y_{n+1})], \quad 0 \le \alpha \le 1$$

which can be regarded as a generalized Heun scheme (for $\alpha = \frac{1}{2}$ it is exactly Heun). Note that, for all α , the stability boundary of this scheme is a circle in the z-plane (for the standard definition of z), with center on the real-line. For what range of α is the method stable for z = -10?

A: UnansweredD: $\alpha < \frac{3}{5}$ G: No such value of α B: $\alpha < \frac{1}{5}$ E: $\alpha < \frac{1}{2}$ C: $\alpha < \frac{2}{5}$ F: $\alpha = 0$ or $\alpha = \frac{1}{2}$

Module 6: Numerical optimization

Question 21 We want to obtain the minimum of the Himmelblau function given by:

$$f(x,y) = (x^{2} + y - 11)^{2} + (x + y^{2} - 7)^{2}$$

A semi-analytical approach is to set the first parentesis to zero by setting $y = 11 - x^2$. The variable y is eliminated giving:

$$g(x) = x^4 - 22x^2 + x + 114.$$

Apply 1 iteration of Newton's method with $x_0 = 2$. What is the value of x_1 ?

A: UnansweredC: $2 - \frac{33}{2}$ E: $2 - \frac{44}{3}$ G: $2 - \frac{55}{4}$ B: $2 + \frac{33}{2}$ D: $2 + \frac{44}{3}$ F: $2 + \frac{55}{4}$

Question 22 Consider the following function:

 $f(x,y) = x^2 + y^2$

that presents a minimum at $\boldsymbol{x} = (0,0)$. Starting from any $\boldsymbol{x}_0 \neq (0,0)$, M is the number of steepest-descent iterations and N is the number of Newton iterations needed to find the optimum exactly. Which one of the following statements is true?

Question 23 We want to approximate π . We know that

$$\pi = \operatorname*{arg\,min}_{1 \le x \le 5} \left[\cos x \right].$$

Apply 1 iteration of golden-section search. What is the midpoint of the interval after this single iteration?

A: Unanswered	C: 3.264	E: 3.464	G: 3.664
B: 3.142	D: 3.364	F: 3.564	H: 3.764

Question 24 Quadratic forms always have a single stationary point, which may be a minimum, maximum, or saddle point. Consider the quadratic form

$$Q(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T \cdot A \cdot \boldsymbol{x} + \boldsymbol{b}^T \cdot \boldsymbol{x} + c.$$

Under what condition does this function have a **maximum**? [Hint: If you get stuck consider first 1d and then 2d examples.]

- A: Unanswered
- B: A is a multiple of the identity matrix
- C: A is diagonal
- D: A is symmetric
- E: A is positive definite
- F: (-A) is positive definite
- G: A is equal to bb^T