Applied Numerical Analysis - Quiz $#3$

Modules 5 and 6

Name: Student number:

DO NOT OPEN UNTIL ASKED

Instructions:

- Make sure you have a machine-readable answer form.
- Write your name and student number in the spaces above, and on the answer form.
- Fill in the answer form neatly to avoid risk of incorrect marking.
- Fill in the version number of your quiz (see bottom right, A-D) on the answer form.
- Use only pencil on the answer form, and correct with a rubber.
- This quiz requires a calculator.
- Each question has exactly one correct answer.
- Correct answers will receive 5 points, unanswered questions 1 point, incorrect answers 0 points.
- This quiz has 10 questions and 5 pages in total.

Question 1 Consider the scalar initial-value problem:

$$
u' = f(u), \qquad u(0) = 1
$$

We use the following three methods, with the same time step $\Delta t = 1$:

- (i) Forward-Euler
- (ii) Backward-Euler
- (iii) Method of Heun (also-known-as the trapezoidal rule)

In each case we approximate u at $t = 5$. When the method is implicit, the system is solved at each timestep with 10 iterations of a fixed-point iteration (and a initial guess $u_{i+1}^{(0)} = u_i$ – to obtain $u_{i+1}^{(10)}$). What is the total number of evaluations of f needed for each method?

Question 2 Consider the following scheme:

$$
y_{n+1} = y_n + \Delta t[\alpha f(y_n) + (1 - \alpha)f(y_{n+1})], \quad 0 \le \alpha \le 1
$$

which can be regarded as a generalized Heun scheme (for $\alpha = \frac{1}{2}$ it is exactly Heun). Note that, for all α , the stability boundary of this scheme is a circle in the z-plane (for the standard definition of z), with center on the real-line. For what range of α is the method stable for $z = -10$?

Question 3 Consider the equation of the harmonic damped oscillator with an external time dependent force:

$$
x'' + x' + x = \sin(\pi t)
$$

with the initial-conditions $x(0) = 0$ and $x'(0) = 1$. Applying forward-Euler method with a timestep $\Delta t = \frac{1}{2}$, what is the position x_1 and the velocity x'_1 after one iteration?

Question 4 Consider the ODE system

$$
x' = 2x + y
$$

$$
y' = 0x - 3y
$$

with initial condition $x(0) = y(0) = 1$. The solution is approximated with forward-Euler with a timestep $\Delta t = \frac{1}{40}$. What can be said about the stability of the ODE and forward-Euler (for this choice of Δt ?

- A: Unanswered.
- B: No solution of the ODE exists.
- C: The ODE is itself unstable.
- D: The ODE is unstable but forward-Euler is stable.
- E: The ODE is stable and forward-Euler is stable.
- F: The ODE is stable and forward-Euler is unstable.

Question 5 Consider the following function:

$$
f(x,y) = 3x^2 + y^2 - 3x + 3xy
$$

Newton's method for optimization is applied and the following two points are found: $a = (3, 2)$ and $b = (2, -3)$. What can be said about these points?

- A: Unanswered
- B: a is a maximum and b is a minimum
- C: a is a minimum and b is a maximum
- D: a is a maximum and b is neither a maximum or minimum
- E: a is a minimum and b is neither a maximum or minimum
- F: a is neither a maximum or minimum and b is a maximum
- G: a is neither a maximum or minimum and b is a minimum

Question 6 Consider the following function:

$$
f(x_1, x_2) = x_1^2 + 1000x_2^2
$$

that presents a minimum at $x = (0, 0)$. Starting from any $x_0 \neq (0, 0)$, M is the number of steepestdescent iterations and N is the number of Newton iterations needed to find the optimum exactly. Which one of the following statements is true?

A: Unanswered B: $M = 1, N = 1$ C: $M \ge 1, N = 1$ D: $M \ge 2, N = 1$ E: $M \ge 1, N = 2$ F: $M \geq 1, N \geq 1$ G: $M \geq 2, N \geq 1$ Question 7 In an optimization procedure, the steepest descent method is being used. In order to verify that the code has been properly implemented, we will calculate the first stepsize α by hand, to cross check it with the one used by the code. The test function

$$
f(x,y) = x^2 + xy + y^2
$$

will be used, with the initial point $x_0 = 1$, $y_0 = 1$. What is the value of the first stepsize α taken by the algorithm?

A: Unanswered C:
$$
\alpha = -\frac{1}{3}
$$

B: $\alpha = \frac{1}{3}$
C: $\alpha = -\frac{1}{3}$
E: $\alpha = -\frac{2}{3}$
E: $\alpha = 2$

Question 8 After an experiment on an airfoil you have a large set of N samples (x_i, y_i) relating the lift y to the angle of attack x. You want to fit this data with a curve of the form: $y =$ $ax + b$. Rather than simple regression to find a and b, you use a fancy statistical approach (called "Maximum-Likelihood Estimation"), which requires maximizing $L(a, b)$:

$$
L(a,b) = \sum_{i=1}^{N} \left[-\frac{N}{2} \log(2\pi) - \frac{N}{2} \log(b^2) - \frac{1}{2b^2} (y_i - ax_i)^2 \right],
$$

where all logs are natural logs. What is the vector pointing in the steepest *ascent* direction?

A: Unanswered
\nB:
$$
\left(\sum_{i=1}^{N} \frac{x_i}{b^2} (y_i - ax_i), \sum_{i=1}^{N} \left(-\frac{N}{b} + \frac{(y_i - ax_i)^2}{b^3}\right)\right)
$$

\nC: $\left(\sum_{i=1}^{N} \frac{a^2}{b} (y_i + ax_i), \sum_{i=1}^{N} \left(\frac{a \cdot N}{b^2} - \frac{(y_i - ax_i)^2}{a^2}\right)\right)$
\nD: $\left(\sum_{i=1}^{N} \frac{a}{b} (y_i - ax_i)^2, \sum_{i=1}^{N} \left(\frac{a}{b} + \frac{(y_i - ax_i)}{b^2}\right)\right)$
\nE: $\left(\sum_{i=1}^{N} \frac{a}{b} (y_i + ax_i)^2, \sum_{i=1}^{N} \left(\frac{N}{ab} + \frac{(y_i - ax_i)}{b^3}\right)\right)$

Question 9 When using Newton's method to find a minimum of $f(\mathbf{x})$, which of the following are true?

- (i) $f(\mathbf{x})$ must be once continuously differentiable at the iterates \mathbf{x}_i , but not twice.
- (ii) If Newton converges, it is always to a minimum.
- (iii) Newton converges to a the same local optimum, independent of the initial guess.

A: Unanswered B: (i) C: (ii) D: (iii) E: (i),(ii) F: (i),(iii) G: (iii) H: None

Question 10 Consider the gutter-shape plotted below with base- and edges of length 2. Goal is to maximize the cross-sectional area of the gutter by varying the angle θ . Golden-section search is applied to solve this problem using an initial interval $I_0 = [0, \frac{\pi}{2}]$. Apply one iteration of this method to obtain I_1 . What is the midpoint of I_1 ? [Note: In G-S search on the interval [0, 1], the interior sample points are at $\frac{1}{\phi}$ and $1 - \frac{1}{\phi}$ with $\phi = \frac{1 + \sqrt{5}}{2}$.]

