Applied Numerical Analysis – Resit

3 hours — Modules 1–6

Name: Student number:

DO NOT OPEN UNTIL ASKED

Instructions:

- Make sure you have a machine-readable answer form.
- Write your name and student number in the spaces above, and on the answer form.
- Fill in the answer form neatly to avoid risk of incorrect marking.
- Fill in the version number of your quiz (see bottom right, A-D) on the answer form.
- Use only pencil on the answer form, and correct with a rubber.
- This quiz requires a calculator.
- Each question has exactly one correct answer.
- Correct answers will receive 5 points, unanswered questions 1 point, incorrect answers 0 points.
- This quiz has 24 questions and 8 pages in total.

Module 1: Taylor, Root-finding, Floating-point

Throughout we use $T_k[f, x_0](x)$ to denote the truncated Taylor series:

$$
T_k[f, x_0](x) := \sum_{i=0}^k \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i.
$$

Question 1 Approximate $f(x) = e^x$ with two different Taylor expansions: $g(x) = T_2[f, 0](x)$ and $h(x) = T_3[f, 0](x)$, both constructed about $x = 0$. Define errors

$$
\epsilon_1 = |f(\frac{1}{100}) - g(\frac{1}{100})|,
$$
 $\epsilon_2 = |f(1) - h(1)|.$

Which *one* of the following is true?

Question 2 One way to approximate integrals is by first approximating the integrand by a truncated Taylor-series, and then integrating the series by hand exactly. Using this method, approximate

$$
\int_{-\pi/2}^{\pi/2} \cos x \, \mathrm{d}x
$$

by first approximating $\cos x$ with a truncated Taylor series about $x_0 = 0$, up to terms including x^2 , and then integrating the series. What is the value of the approximate integral?

A: Unanswered B: $\frac{2\pi}{3}$ C: $\frac{4\pi}{5}$ D: $\pi - \frac{\pi^3}{24}$ 24 E: $\pi - \frac{\pi^2}{8}$ \overline{F} : π 8 G: 2

Question 3 The small-angle approximation for trigonometric functions is based on a Taylor expansion about $x = 0$, up to quadratic terms. For which angle does approximation of $sin(x)$ have a relative error exceeding approximately 1.0%? [Hints: Relative error is defined as $\frac{f_{true} - f_{approx}}{f_{true}} \times$ 100%. Rather than solving the resulting equation, each of the given options can be checked.]

Question 4 A fixed point iteration is specified as:

$$
x_{i+1} = \tan x_i - 2x_i + 1.
$$

What equation is being solved here?

Module 2: Polynomial Interpolation and Regression

Question 5 Interpolate a function $f(x)$ with polynomials. You choose to use the monomial, the Newton and the Lagrange basis on the same grid (nodes) to get the interpolants $p_1(x)$, $p_2(x)$ and $p_3(x)$ respectively. What can be said about $p_1(x)$, $p_2(x)$ and $p_3(x)$?

Question 6 Consider an unknown function $f(x)$ which is sampled $N + 1$ times at distinct coordinates x_i . For these samples we are able to find interpolating functions $\phi_M(x)$ defined as

$$
\phi_M(x) = \sum_{i=0}^M a_i x^i,
$$

and this is possible for $M = 1$, and $M = 2$ and ... and $M = N$. Which one of the following options is true?

A: Unanswered B: $f(x)$ is linear C: $f(x)$ is quadratic D: $a_0 = 0$ in all $\phi_M(x)$ E: All $\phi_M(x)$ are identical

Question 7 Consider the following data points:

$$
\begin{array}{c|cccc}\ni & 0 & 1 & 2 & 3 \\
\hline\n t & 0 & 1 & 2 & 3 \\
 y & 0 & 1 & 4 & 9\n\end{array}
$$

We interpolate this data using the Lagrange basis:

$$
y(t) \simeq \sum_{i=0}^{3} y_i \,\ell_i(t).
$$

What is the Lagrange polynomial $\ell_1(t)$ in the above? (Note that the index starts at 0!)

Question 8 Consider the function $f(x) = \sin(x)$. Assume we know the value of the function only at 3 equidistant points: $(x_0, x_1, x_2) = (-h, 0, h)$. We interpolate this function using a second degree polynomial. We know an upper bound for the interpolation error for a degree N polynomial from Cauchy's theorem:

$$
|f(x) - p_N(x)| \le \max_{\xi \in [a,b]} |f^{N+1}(\xi)| \frac{|\omega_{N+1}(x)|}{(N+1)!},
$$

where ω is the nodal polynomial. Based on this result, what is a bound on the error in the specific case above?

Module 3: Advanced interpolation

Question 9 Which of the following functions is not a linear, quadratic or cubic spline?

A: Unanswered B:

$$
f(x) = \begin{cases} 2x^3 - \frac{9}{2}x^2 + 5x - \frac{3}{2}, & x \in [0, 1] \\ 3x^3 - \frac{15}{2}x^2 + 8x - \frac{5}{2}, & x \in [1, 2] \end{cases}
$$

C:

$$
f(x) = \begin{cases} 3x^3 - 8x^2 + 8x - 1, & x \in [0, 1] \\ 2x^3 - 5x^2 + 3x + 2, & x \in [1, 2] \end{cases}
$$

D:

$$
f(x) = \begin{cases} 2x - 1, & x \in [0, 1] \\ 3x - 2, & x \in [1, 2] \end{cases}
$$

E:

$$
f(x) = \begin{cases} 2x^2 - 2x + 1, & x \in [0, 1] \\ 3x^2 - 4x + 2, & x \in [1, 2] \end{cases}
$$

Question 10 Consider the function $f(x, y) = 1/(x+y+1)$. Evaluate this function at the nodes given in the table, and linearly interpolate (triangular patch). What is the value of the interpolant at the point $(x, y) = (1/2, 1/2)$?

i	1	2	3
x_i	0	1	1
y_i	0	0	1

\nA: Unanswered

\n

C:	$\frac{2}{3}$	E:	$\frac{5}{6}$				
B:	$\frac{1}{2}$	D:	$\frac{3}{4}$	F:	$\frac{5}{8}$	H:	1

Question 11 Suppose we define an approximating function $\phi(x) = \sum_{i=1}^{I} a_i b_i(x)$, where $b_i(x)$ are given functions of x. To determine the coefficients $\{a_i : i = 1...I\}$ from given data $\{f_i :$ $i = 1 \dots N$ at N distinct points, we can either use interpolation or least-squares approximation. Which one of the following is true? Interpolation and least-squares approximation:

A: Unanswered

- B: Always provide the same coefficients;
- C: Provide the same coefficients if $N = I$ and, at the same time, the data are not noisy;
- D: Provide the same coefficients if $N = I$;
- E: Provide the same coefficients if the interpolation problem is uniquely solvable;
- F: Provide the same coefficients if the data are not noisy;
- G: Never provide the same coefficients;

Question 12 We interpolate $f(x, y)$ at $N + 1$ points (x_i, y_i) , all lying on a circle of radius R, using radial basis-function interpolation, with the radial function $\phi(r) = \exp(-r^2)$. The resulting interpolant takes the value M at the center of the circle. What is the sum of the unknown coefficients of the radial-basis interpolant, $\sum_{i=0}^{N} a_i$?

Module 4: Numerical differentiation and Integration

Question 13 Given the following numerical differentiation schemes:

$$
f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} + O(h)
$$

\n
$$
f'(x_0) = \frac{f(x_0) - f(x_0 - h)}{h} + O(h)
$$

\n
$$
f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} + O(h^2)
$$

\n
$$
f'(x_0) = \frac{1}{2h} \Big[-3 f(x_0) + 4 f(x_0 + h) - f(x_0 + 2h) \Big] + O(h^2)
$$

\n
$$
f'(x_0) = \frac{1}{2h} \Big[3f(x_0) - 4f(x_0 - h) + f(x_0 - 2h) \Big] + O(h^2)
$$

\n
$$
f'(x_0) = \frac{1}{12h} \Big[f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h) \Big] + O(h^4).
$$

Use one of these formulas to determine, as accurately as possible, an approximation for $f'(0.0)$ using only the data in the following table:

$$
\begin{array}{c|cccccc} x & 0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\ \hline f(x) & 0.00 & 0.01 & 0.04 & 0.09 & 0.16 & 0.25 \end{array}
$$

What is the value of the approximation?

A: Unanswered C:
$$
-\frac{2}{10}
$$
 E: 0 G: $\frac{2}{10}$
B: $-\frac{3}{10}$ D: $-\frac{1}{10}$ F: $\frac{1}{10}$ H: $\frac{3}{10}$

Question 14 Given the numerical differentiation schemes and data in Question 13, use one of these formulas to determine, as accurately as possible, an approximation for $f'(0.6)$. It is?

A: Unanswered C:
$$
-\frac{2}{10}
$$
 E: 0 G: $\frac{2}{10}$
B: $-\frac{3}{10}$ F: $\frac{1}{10}$ H: $\frac{3}{10}$

Question 15 Consider grid with uniform spacing h, nodes x_i , and values f_i . Higher-degree derivatives can be approximated by recursive application of difference-rules for 1st-derivatives. By repeated application of central differences $f'(x_i) \simeq \frac{f_{i+1}-f_{i-1}}{2h}$, obtain an approximation to $f''(x_i)$. What is the stencil of this approximation (i.e. the set of nodes needed to evaluate the rule)?

A: Unanswered B: $(i-1, i+1)$ C: $(i-2, i+2)$ D: $(i-1, i, i+1)$ E: $(i-2,i,i+2)$ F: $(i-2, i-1, i+1, i+2)$ G: $(i-2, i-1, i, i+1, i+2)$

Question 16 Hyperbolic quadrature. Until now we have considered quadrature rules that integrate polynomials of degree d exactly. Using the same principles derive a quadrature rule that integrates the functions $\phi = [1, \sinh(x), \cosh(x)]$ exactly on the interval $x \in [-1, 1]$. For nodes use $x = (-1, 0, 1)$. What is the weight of the node at $x = 1$? [Note: cosh $(x) = (e^x + e^{-x})/2$, $\sinh(x) = (e^x - e^{-x})/2.$

Module 5: Numerical solution of ODEs

Throughout we assume the standard form of the ODE: $y'(t) = f(y(t))$.

Question 17 Consider the ODE $y' = -y$ with initial-condition $y(0) = 2$. Use forward-Euler to approximate y(1) with a step-size of $\Delta t = 0.1$. What is approximately the error with respect to the exact solution at $t = 1$?

Question 18 Which of the following numerical schemes are *explicit?*

(i) $y_{n+1} = y_n + \Delta t f(y_n)$ (ii) $y_{n+1} = y_n + \Delta t f(y_{n+1})$ (iii) $y_{n+1} = y_n + \frac{\Delta t}{2} (f(y_n) + f(\hat{y}))$, $\hat{y} = y_n + \Delta t f(y_n)$ (iv) $y_{n+1} = y_n + \frac{\Delta t}{2} (f(y_n) + f(y_{n+1}))$ (v) $y_{n+1} = y_n + \frac{\Delta t}{2} (f(y_n) + f(y_{n-1}))$ A: Unanswered B: (i) , (iii) C: (ii), (iv) E: (i), (iii), (v) F: (i), (iv), (v) G: (i), (iii), (iv), (v)

Question 19 For the initial value problem $y' = cy, y(t_0) = y_0$, and $c \in \mathbb{C}$ a complex number, we consider the method:

H: (iii), (iv), (v)

$$
y_{n+1} = y_n + \Delta t[\alpha f_n + (1 - \alpha)f_{n-1}],
$$

where $f_n = cy_n$. Let $z = c\Delta t$. The corresponding defect equation has solutions of the form $\delta_n = \beta^n$, and is therefore stable for $|\beta| \leq 1$. Which of the following equations relates β to z?

Question 20 Consider a difference scheme $y_{i+1} = \mathcal{D}(y_i)$ applied to an initial-value problem with exact solution $y(t)$. Let the scheme predict a discrete solution y_i at time t_i . Which of the following statements are true?

(i) The global error at time t_i is $|y(t_i) - y_i|$.

D: (iv) , (v)

- (ii) The local error at time t_i is $|\mathcal{D}(y(t_i)) y(t_{i+1})|$.
- (iii) If $y(t)$ is a polynomial of degree ≤ 1 , and $\mathcal D$ is 1st-order accurate, then $y(t_i) = \mathbf{y}_i$.

Module 6: Numerical optimization

Question 21 You are jogging on a path which can be described by a curve $y = \log x$ (where the natural logarithm is used). Your car is parked at the origin $(0, 0)$. You want to stop jogging at the point closest to your car. Use Newton's method to minimize the squared distance to the car, with an initial guess of $x_0 = 1$. What is the value of x_1 ?

Question 22 Consider minimization of the function of two variables $\mathbf{x} = (x, y)$:

$$
f(\mathbf{x}) = \frac{1}{2}(ax^2 + by^2)
$$

using Newton's method. What is the value of the vector $\mathbf{x}_1 - \mathbf{x}_0$ for $\mathbf{x}_0 = (x_0, y_0) = (1, 2)$?

A: Unanswered
\nB:
$$
(2,-1)
$$

\nC: $(-1,-2)$
\nD: $(-a,-2b)$
\nE: $(a, 2b)$
\nF: $(-2, 1)$
\nE: $(a, -b)$
\nE: $(a, 2b)$
\nE: $(a, 2b)$
\nE: $(a, 2b)$
\nE: $(a, -b)$

Question 23 Three iterations of the Golden-Section Search algorithm are applied to minimize the function $f(x) = (\cosh x)^2 + x - 1$ using the starting interval [-1, 10]. What is approximately the function $f(x) = (\cosh x)^2 + x - 1$ using the starting interval $[-1, 10]$. What is approximate width of the interval after three iterations? [Hint: The golden ratio is $\phi = \frac{1}{2}(1 + \sqrt{5})$.]

Question 24 Quadratic forms always have a single stationary point, which may be a minimum, maximum, or saddle point. Consider the quadratic form

$$
Q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \cdot A \cdot \mathbf{x} + \mathbf{b}^T \cdot \mathbf{x} + c.
$$

Under what condition on A is this function guaranteed to have a maximum? [Hint: If you get stuck consider first 1d and then 2d examples.]

- A: Unanswered
- B: A is a multiple of the identity matrix
- C: A is diagonal
- D: A is symmetric
- E: A is positive definite (all positive eigenvalues)
- F: A is negative definite (all negative eigenvalues)
- G: A has only positive eigenvalues
- H: A is equal to bb^T