Applied Numerical Analysis – Quiz #3

Modules 5 and 6

Name: ____

_____ Student number: _____

DO NOT OPEN UNTIL ASKED

Instructions:

- Make sure you have a machine-readable answer form.
- Write your name and student number in the spaces above, and on the answer form.
- Fill in the answer form neatly to avoid risk of incorrect marking.
- Fill in the version number of your quiz (see bottom right, A-D) on the answer form.
- Use only pencil on the answer form, and correct with a rubber.
- This quiz requires a calculator.
- Each question has exactly one correct answer.
- Correct answers will receive 5 points, unanswered questions 1 point, incorrect answers 0 points.
- This quiz has 10 questions and 4 pages in total.

Module 5: ODEs

Note: Throughout this quiz we consider the standard form of the ODE to be:

$$y'(t) = f(y(t)).$$

Question 1 If the error introduced per step of an *unspecified* stable time integration scheme is $\mathcal{O}(\Delta t^3)$, what can you say about the the error in the solution at a fixed time T?

A: Unanswered	C: $\mathcal{O}(\Delta t^1)$	E: $\mathcal{O}(\Delta t^3)$	G: $\mathcal{O}(\Delta t^5)$
B: Not enough data	D: $\mathcal{O}(\Delta t^2)$	F: $\mathcal{O}(\Delta t^4)$	H: $\mathcal{O}(\Delta t^6)$

Question 2 Consider the system of two non-linear first-order ODEs

$$z_1' = z_2$$
$$z_2' = -\frac{g}{l}\sin(z_1)$$

describing an ideal pendulum, in which z_1 is the phase angle and z_2 is its time derivative. Use forward-Euler and the initial condition $(z_1^{(0)}, z_2^{(0)}) = (\frac{\pi}{2}, 0)$ (superscripts indicate the timestep). Assume $\frac{g}{l} = 10$. What is the value of $(z_1^{(1)}, z_2^{(1)})$ if $\Delta t = 0.001$?

A:	Unanswered	D: $(-\pi/2, -0.01)$	G: $(0, \pi/2)$
B:	$(\pi/2, -0.01)$	E: $(-\pi/2, 0.01)$	
C:	$(\pi/2, 0.01)$	F: $(0, -\pi/2)$	

Question 3 Consider the *implicit* scheme:

$$y_{n+1} = y_n + \frac{\Delta t}{2} \left[f(y_{n+1}) + f(y_n) \right].$$

By linearization one can obtain an *explicit* scheme which is an approximation to this - with approximation error $O(\Delta t^3)$. Which of the following is that explicit scheme? [Note: $f_y := \frac{\partial f}{\partial y}$]

Question 4 Consider the ODE y' = -2y. Using the forward-Euler scheme we can write:

$$y_{i+1} = y_i + h(-2y_i) = y_0 (1 - 2h)^{i+1}$$

For which range of stepsize h is the scheme stable for this equation?

A: Unanswered	D: $h < 0$	G: $0 < h < 1$
B: Never stable	E: $h > 0.5$	H: $0 < h < 2$
C: $h > 0$	F: $0 < h < 0.5$	

Question 5 Consider *numerical stability* of the 2-step Adam-Bashford scheme, given by:

$$y_{i+2} = y_{i+1} + \frac{\Delta t}{2} [3f_{i+1} - f_i].$$

As usual define $z = \lambda \Delta t \in \mathbb{C}$. Derive the discrepency equation, and solve it using solutions of the form $\delta_i = \beta^i$. What is the equation relating β and z that defines the stability region? [Hint: If you don't remember how to get the discrepency equation, use $f_i = \lambda y_i$ in the difference scheme.]

A: Unanswered C: $\beta - 1 + z - 3z = 0$ E: $\beta - (1 + \frac{3}{2}z)\beta + \frac{z}{2} = 0$ B: $\beta^2 - (1 + \frac{3}{2}z)\beta + \frac{z}{2} = 0$ D: $\beta^2 + (1 + 3z)\beta + z = 0$ F: $\beta^2 - (1 - \frac{3}{2}z)\beta + \frac{1}{2} = 0$

Question 6 Consider a difference scheme $\mathbf{y}_{i+1} = \mathcal{D}(\mathbf{y}_i)$ applied to an initial-value problem with exact solution y(t). Let the scheme predict a discrete solution \mathbf{y}_i at time t_i . Which of the following statements are true?

- (i) The global error at time t_i is $|y(t_i) \mathbf{y}_i|$.
- (ii) The local error at time t_i is $|\mathcal{D}(y(t_i)) y(t_{i+1})|$.
- (iii) If y(t) is a polynomial of degree ≤ 1 , and \mathcal{D} is 1st-order accurate, then $y(t_i) = \mathbf{y}_i$.

A: Unanswered	D: (ii)	G: (ii) and (iii)
B: None	E: (i) and (ii)	H: (i) , (ii) and (iii)
C: (i)	F: (i) and (iii)	

Module 6: Optimization

Question 7 Coca-Cola cans are cylinders of constant volume $V = 311 \text{ cm}^3$ optimized for minimum surface to volume (S/V) ratio. What is approximately the radius of a Coca-Cola can?

- A: Unanswered
- B: Insufficient Data For A Meaningful Answer
- C: 1.25 cm
- D: 3.67 cm.
- E: 4.51 cm
- F: 6.54 cm
- $G: 7.34 \,\mathrm{cm}$
- H: 8.03 cm

Question 8 We want to obtain the minimum of the Himmelblau function given by:

$$f(x,y) = (x^{2} + y - 11)^{2} + (x + y^{2} - 7)^{2}.$$

A semi-analytical approach is to set the first parentesis to zero by setting $y = 11 - x^2$. The variable y is eliminated giving:

$$g(x) = x^4 - 22x^2 + x + 114.$$

Apply 1 iteration of Newton's method with $x_0 = 2$. What is the value of x_1 ?

A: UnansweredC: $2 - \frac{33}{2}$ E: $2 - \frac{44}{3}$ G: $2 - \frac{55}{4}$ B: $2 + \frac{33}{2}$ D: $2 + \frac{44}{3}$ F: $2 + \frac{55}{4}$

Question 9 A minimization problem in f(x) can be reduced to a zero-finding problem by setting f'(x) = 0. In a similar way a 1d zero-finding problem g(x) = 0 can be rephrased as an minimization problem: Find x such that

$$\min_{x} \frac{1}{2} \left[g(x) \right]^2.$$

This will have a global minimum at every x which satisfies g(x) = 0, but may also have other local minima $\tilde{x}_1, \ldots, \tilde{x}_n$. What equation(s) will these local minima satisfy?

A: Unanswered	E: $g'(\tilde{x}_i) = 0$ and $g''(\tilde{x}_i) > 0$
B: $g(\tilde{x}_i) = 0$	F: $g'(\tilde{x}_i) = 0$ and $g''(\tilde{x}_i) < 0$
C: $\sum_{i} g(\tilde{x}_i) = 0$	G: $g'(\tilde{x}_i) = 0$ and $g(\tilde{x}_i) \cdot g''(\tilde{x}_i) > 0$
D: $\sum_{i} \tilde{x}_{i} = 0$	H: $g'(\tilde{x}_i) = 0$ and $g(\tilde{x}_i) \cdot g''(\tilde{x}_i) < 0$

Question 10 Pseudo-code for the Golden-section search is given below, containing *one* error. What line of the code contains the error? [Note: $\varphi = \frac{1+\sqrt{5}}{2}$, and input is the starting interval [a, b], and an error tolerance ε .]

1. $x_1 \leftarrow a$ 2. $x_2 \leftarrow b$ 3. $x_3 \leftarrow x_2 - \frac{1}{\varphi}(x_2 - x_1)$ 4. $x_4 \leftarrow x_1 + \frac{1}{\varphi}(x_2 - x_1)$ 5. error $\leftarrow \infty$ 6. while error $> \varepsilon$ **if** $f(x_3) > f(x_4)$ 7. 8. $x_2 \leftarrow x_4$ $\begin{array}{l} x_4 \leftarrow x_3 \\ x_3 \leftarrow x_2 - \frac{1}{\varphi}(x_2 - x_1) \end{array}$ 9. 10.11. else 12. $x_1 \leftarrow x_3$ $\begin{array}{c} x_3 \leftarrow x_4 \\ x_4 \leftarrow x_1 + \frac{1}{\varphi} (x_2 - x_1) \end{array}$ 13.14. 15.end if 16.error = $|x_3 - x_4|$ 17. end while 18. return x_3, x_4

A:	Unanswered	C:	Line 10
B:	Line 7	D:	Line 14

E: Line 16