Applied Numerical Analysis – Quiz #2

Modules 3 and 4

Name: ____

_____ Student number: _____

DO NOT OPEN UNTIL ASKED

Instructions:

- Make sure you have a machine-readable answer form.
- Write your name and student number in the spaces above, and on the answer form.
- Fill in the answer form neatly to avoid risk of incorrect marking.
- Fill in the version number of your quiz (see bottom right, A-D) on the answer form.
- Use only pencil on the answer form, and correct with a rubber.
- This quiz requires a calculator.
- Each question has exactly one correct answer.
- Correct answers will receive 5 points, unanswered questions 1 point, incorrect answers 0 points.
- This quiz has 10 questions and 4 pages in total.

Module 3: Advanced Interpolation

Question 1 Do there exist constants a,b,c and d so that the function s(x)

$$s(x) = \begin{cases} ax^3 + x^2 + cx & -1 \le x \le 0\\ bx^3 - x^2 + dx & 0 \le x \le 2 \end{cases}$$

is a natural cubic spline? If yes, what are the values of a, b, c and d? [Note: "Natural" implies s'' = 0 at the boundaries.]

A: Unanswered	E: Yes, $a = b = \frac{1}{6}, c = d = 0.$
B: Yes, $a = b = \frac{1}{3}, c = d$.	F: No, $s(x)$ is not a spline.
C: Yes, $a = \frac{1}{3}, b = \frac{1}{6}, c = d = 0.$	G: No, $s(x)$ is a spline, but not a natural
D: Yes, $a = \frac{1}{6}, b = \frac{1}{3}, c = d$.	spline.

Question 2 Neglecting friction the height in time y(t) of a launched projectile can be modelled as

$$y(t) = v_0 t \sin(\theta) - \frac{g}{2}t^2$$

with launching angle θ , launching velocity v_0 and gravitational acceleration $g = 10 m/s^2$. You interpolate measurements of $y(t_i)$ sampled at regular intervals in time on the interval [0, T], i.e. $t = [0, \Delta t, 2\Delta t, \ldots, T]$ with a natural cubic spline. Based on the spline what is the value of the acceleration of the projectile at time T?

A: Unanswered	E: $g = 5 \text{ m/s}^2$
B: $g = 0 \text{ m/s}^2$	F: $g = 10 \text{ m/s}^2$
C: $g = 1 \text{ m/s}^2$	G: $g = 25 \text{ m/s}^2$
D: $g = 2.5 \text{ m/s}^2$	H: Insufficient information given.

Question 3 Which of the following are shape functions (i.e. basis functions) of a linear interpolator on the triangle in 2d, with vertices $(x_1, y_1) = (1, 1), (x_2, y_2) = (1, 3), \text{ and } (x_3, y_3) = (3, 1)$? [Note: Shape functions must take the value 1 at one vertex, 0 at others.]

A: Unanswered	D: $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$
B: $\frac{1}{3} \begin{bmatrix} 1 & x & y \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 3 & 1 \end{bmatrix}$	D: $-\frac{1}{4}\begin{bmatrix} 1 & x & xy \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 3 & 1 \end{bmatrix}$
C: $-\frac{1}{2}\begin{bmatrix} 1 & x & y \end{bmatrix} \cdot \begin{bmatrix} -4 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$	E: $\frac{1}{2} \begin{bmatrix} 1 & xy & x \end{bmatrix} \cdot \begin{bmatrix} -1 & -1 & 1 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$

Question 4 Consider the following statements relating to the approximating function (the "approximant") obtained with polynomial least-squares regression:

- (i) The approximant is always smooth.
- (ii) In the univariate (1-dimensional) case, the approximant is unique.
- (iii) The approximant minimizes the sum of the squares of the residuals.
- (iv) The approximant always passes through at least one of the data points.

Which are true?

A: Unanswered	D: (i), (ii) & (iii)	G: (i) & (iv)
B: (i) & (ii)	E: (iii)	H: All of the above
C: (iii) & (iv)	F: (ii) & (iii)	

Question 5 The following data is given:

Find the parabola that best fit the data in a least-square sense. What is approximately the value of the residual at x = 1 and x = 2 respectively?

A: Unanswered	C: 0.00, 0.01	E: 0.01, 0.01	G: $0.43, 0.00$
B: 0.00, 0.00	D: 0.01, 0.00	F: 0.01, 0.43	H: 0.43, 0.01

Question 6 The following distinct data is given:

Given the following four sets of basis functions, which will give the best approximation of the data in the sense of minimizing the least-squares residual?

(i) $\varphi_1 = 1$, $\varphi_2 = x$ (ii) $\varphi_1 = 1$, $\varphi_2 = x$, $\varphi_3 = x^2$ (iii) $\varphi_1 = 1$, $\varphi_2 = x$, $\varphi_3 = x^2$, $\varphi_4 = x^3$ (iv) $\varphi_1 = 1$, $\varphi_2 = x$, $\varphi_3 = x^2$, $\varphi_4 = x^3$, $\varphi_5 = x^4$ A: Unanswered B: (i) C: (ii) D: (iii) E: (iv) F: Not enough information to answer

Module 4: Numerical differentiation and integration

Question 7 The function f(x) has everywhere positive second-derivatives - i.e. $f''(\xi) > 0$ for all $\xi \in \mathbb{R}$. What can be said about the truncation error

$$\varepsilon := Df - f'(x)$$

when using (a) forward-differences for D and (b) backward-differences for D, when approximating f'(x)? [Hint: Derive the trunction error using a 3-term Taylor-series.]

Question 8 A high-order central-difference formula for the 1st-derivative of $f \in C^6([a, b])$ is:

$$f'(x_i) = \frac{f(x_i - 2h) - 8f(x_i - h) + 8f(x_i + h) - f(x_i + 2h)}{12h} + \epsilon$$

where ϵ is the truncation error. What is the value of the term in ϵ involving $f^{(5)}(x_i)$?

A: Unanswered
B:
$$-\frac{h^4 f^{(5)}(x_i)}{5}$$
 D: $-\frac{h^4 f^{(5)}(x_i)}{30}$ E: $-\frac{h^4 f^{(5)}(x_i)}{45}$

Question 9 Consider the integral:

$$I = \int_{-1}^{1} (e^x + 1) \,\mathrm{d}x$$

What is approximately the error ε made by approximating the integral with Simpson's rule? [Hint: Simpson's rule is the same as a 3-point closed Newton-Cotes rule.]

A: UnansweredC: $\varepsilon = 0.080$ E: $\varepsilon = 0.235$ G: $\varepsilon = 1.235$ B: $\varepsilon = 0.012$ D: $\varepsilon = 0.125$ F: $\varepsilon = 0.535$

Question 10 Fourier quadrature. Until now we have considered quadrature rules that integrate polynomials of degree d exactly. Using the same principles derive a quadrature rule that integrates the functions $\phi = [1, \sin(x), \cos(x)]$ exactly on the interval $x \in [0, \pi]$. For nodes use $x = (0, \frac{\pi}{2}, \pi)$. What are the corresponding weights?

A: Unanswered	E: $w = (\frac{\pi}{2} + 1, -2, \frac{\pi}{2} + 1)$
B: $w = (\frac{\pi}{2}, 0, \frac{\pi}{2})$	F: $w = (\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3})$
C: $w = (\frac{\pi}{2} - 1, 2, \frac{\pi}{2} - 1)$	G: $w = (\frac{\pi}{3} - 1, \frac{\pi}{3} + 2, \frac{\pi}{3} - 1)$
D: $w = (-1, 2 + \pi, -1)$	H: $w = (0, \pi, 0)$