Applied Numerical Analysis – Quiz #3
Modules 5 and 6

Name: ____________________________ Student number: _____

DO NOT OPEN UNTIL ASKED

Instructions:

• Make sure you have a machine-readable answer form.

• Write your name and student number in the spaces above, and on the answer form.

• Fill in the answer form neatly to avoid risk of incorrect marking.

• Fill in the version number of your quiz (see bottom right, A-D) on the answer form.

• Use only pencil on the answer form, and correct with a rubber.

• This quiz requires a calculator.

• Each question has exactly one correct answer.

• Correct answers will receive 5 points, unanswered questions 1 point, incorrect answers 0 points.

• This quiz has 10 questions and 4 pages in total.
Module 5: Numerical solution of ODEs

Throughout we assume the standard form of the ODE: \(u'(t) = f(u(t)) \).

Question 1 The ODE \(u' = -\frac{5}{2}u \) with initial condition \(u(0) = 2 \) is solved numerically using (a) the forward-Euler method (explicit), and (b) the backward-Euler method (implicit). In both cases the stepsize \(\Delta t = 0.6 \). Of the two methods, which are stable?

A: Unanswered
B: Neither
C: (a) only
D: (b) only
E: Both

Question 2 A function \(f(u) \) is Lipschitz continuous on an interval \([a, b]\) if: there exists some Lipschitz constant \(0 < L < \infty \), such that for all \(u_1 \) and \(u_2 \) in \([a, b]\)

\[|f(u_1) - f(u_2)| \leq L|u_1 - u_2|. \]

The function \(f(u) = u^2 \) is Lipschitz continuous on \([0, 10]\). What is the minimum constant \(L \) needed in the definition above, for this function on this interval?

A: Unanswered
B: \(\frac{1}{5} \)
C: \(\frac{1}{2} \)
D: \(1 \)
E: \(2 \)
F: \(5 \)
G: \(10 \)
H: \(20 \)

Question 3 Which of the following statements are true?

i. A scalar ODE of the form \(y^{(M)} + y^{(M-1)} + \cdots + y' = F(y) \), can always be transformed into an equivalent system of ODEs \(u' = f(u) \), with \(u \) a vector of size \(M \).

ii. Discretization errors typically decrease with decreasing step size.

iii. Floating-point rounding errors typically increase with decreasing step size.

iv. If the local discretization error of a scheme is \(O(\Delta t^p) \), its global truncation error is always \(O(\Delta t^{p-1}) \).

A: Unanswered
B: None
C: i, ii
D: i, ii, iii
E: i, iii, iv
F: ii, iv
G: ii, iii, iv
H: All

Question 4 Consider the ODE \(u' = -cu \) with initial condition \(u(0) = 1 \) and constant \(c > 0 \). Using backward Euler:

\[u_{i+1} = u_i + \Delta t f(u_{i+1}) \]

and \(\Delta t = \frac{1}{2} \), what is the approximation of \(u(4) \)?

A: Unanswered
B: \((1 + c/2)^{-8} \)
C: \((1 + c/2)^8 \)
D: \((1 - c/2)^{-8} \)
E: \((1 - c/2)^8 \)
F: \((c/2)^{-8} \)
G: \((c/2)^8 \)

Question 5 Consider the scheme:

\[u_{i+1} = u_i + \frac{3}{2} \Delta t f(u_i) + \frac{1}{2} \Delta t f(u_{i-1}) \]

where \(u_i \) and \(u_{i-1} \) are known, and \(u_{i+1} \) is unknown. What is the local-truncation error of this scheme? [Hint: Taylor expand \(u_{i-1} \), then \(f(u_{i-1}) \).]
Module 6: Numerical optimization

Question 6 Consider an objective function $J(x)$ for $x \in \mathbb{R}$. Near some unspecified x_0, J can be approximated by $J(x_0 + h) = 4 - 2h^2 + O(h^3)$ with $|h| << 1$. What can be said about J at x_0? It is a:

A: Unanswered
B: Local minimum
C: Local maximum
D: Global minimum
E: Global maximum
F: Zero point (root)
G: Inflection point
H: None of the above

Question 7 Consider minimizing $f(x)$. Which of the following is false?

i. The golden-section search is guaranteed to reduce the width interval by a factor of $(1 + \sqrt{5})/2$ at each successful iteration

ii. Newton minimizing $f(x)$ is equivalent to finding a root of $f'(x)$

iii. If Newton converges to a minimum it will converge quadratically

iv. Steepest descent is guaranteed to converge to the global minimum

v. The Nelder-Mead simplex method requires $d+1$ evaluations of f to generate the initial simplex if x is d-dimensional

A: Unanswered
B: i
C: ii
D: iii
E: iv
F: v
G: All are true
H: All are false

Question 8 A rectangular cold storage box with square base of edge length l meters, height h meters and perfectly insulated top has a total volume of 10 m^3. All other sides are uninsulated. The goal is to find l such that heat loss is minimized. Apply Newton’s method for optimization to minimize a suitable objective function (assume heat loss is proportional to surface area). Perform the update in terms of l, starting with an initial estimate $l_0 = 1.0$. What is l_1 to two decimal places?

A: Unanswered
B: 0.46
C: 1.46
D: 1.19
E: 1.23
F: 0.54
G: 2.46
H: 1.54

Question 9 Consider \tilde{x} the unique minimum of the function $f(x) = 7x - \ln(x)$. Using Newton’s method for minimization, and starting from $x_0 = 0.1$, what is the error in the approximation after one iteration?

A: Unanswered
B: 0.129
C: 0.0129
D: 0.00129
E: 0.000129
F: 0.0000129
Question 10 Steepest descent for minimizing $f(x,y)$ in 2-dimensions requires the gradient: $
abla f(x_i, y_i)$ on iteration i. Assuming the function $\nabla f(x, y)$ is not known, it can be approximated at (x_i, y_i) by a difference rule (e.g. forward/backward/central differences). What is the minimum number of samples of $f(\cdot)$ required to approximate the gradient at (x_i, y_i) in this way?

A: Unanswered
B: 1
C: 2
D: 3
E: 4
F: 5