Applied Numerical Analysis – Quiz #3

Modules 5 and 6

Name: ____

_____ Student number: _____

DO NOT OPEN UNTIL ASKED

Instructions:

- Make sure you have a machine-readable answer form.
- Write your name and student number in the spaces above, and on the answer form.
- Fill in the answer form neatly to avoid risk of incorrect marking.
- Fill in the version number of your quiz (see bottom right, A-D) on the answer form.
- Use only pencil on the answer form, and correct with a rubber.
- This quiz requires a calculator.
- Each question has exactly one correct answer.
- Correct answers will receive 5 points, unanswered questions 1 point, incorrect answers 0 points.
- This quiz has 10 questions and 4 pages in total.

Module 5: Numerical solution of ODEs

Throughout we assume the standard form of the ODE: $\mathbf{u}'(t) = f(\mathbf{u}(t))$.

Question 1 The ODE $u' = -\frac{5}{2}u$ with initial condition u(0) = 2 is solved numerically using (a) the forward-Euler method (explicit), and (b) the backward-Euler method (implicit). In both cases the stepsize $\Delta t = 0.6$. Of the two methods, which are stable?

A: Unanswered	C: (a) only	E: Both
B: Neither	D: (b) only	

Question 2 A function f(u) is Lipschitz continuous on an interval [a, b] if: there exists some Lipschitz constant $0 < L < \infty$, such that for all u_1 and u_2 in [a, b]

$$|f(u_1) - f(u_2)| \le L|u_1 - u_2|.$$

The function $f(u) = u^2$ is Lipschitz continuous on [0, 10]. What is the minimum constant L needed in the definition above, for this function on this interval?

A: Unanswered	C: $1/2$	E: 2	G: 10
B: 1/5	D: 1	F: 5	H: 20

Question 3 Which of the following statements are true?

- i. A scalar ODE of the form $y^{(M)} + y^{(M-1)} + \cdots + y' = F(y)$, can always be transformed into an equivalent system of ODEs $\mathbf{u}' = f(\mathbf{u})$, with \mathbf{u} a vector of size M.
- ii. Discretization errors typically decrease with decreasing step size.
- iii. Floating-point rounding errors typically increase with decreasing step size.
- iv. If the local discretization error of a scheme is $\mathcal{O}(\Delta t^p)$, its global truncation error is always $\mathcal{O}(\Delta t^{p-1})$.

A: Unanwered	C: i, ii	E: i, iii, iv	G: ii, iii, iv
B: None	D: i, ii, iii	F: ii, iv	H: All

Question 4 Consider the ODE u' = -cu with initial condition u(0) = 1 and constant c > 0. Using backward Euler:

$$u_{i+1} = u_i + \Delta t f(u_{i+1})$$

and $\Delta t = \frac{1}{2}$, what is the approximation of u(4)?

A: Unanswered C: $(1 + c/2)^8$ E: $(1 - c/2)^8$ G: $(c/2)^8$ B: $(1 + c/2)^{-8}$ D: $(1 - c/2)^{-8}$ F: $(c/2)^{-8}$

Question 5 Consider the scheme:

$$u_{i+1} = u_i + \frac{3}{2}\Delta t f(u_i) + \frac{1}{2}\Delta t f(u_{i-1}),$$

where u_i and u_{i-1} are known, and u_{i+1} is unknown. What is the local-truncation error of this scheme? [Hint: Taylor expand u_{i-1} , then $f(u_{i-1})$.]

A: Unanswered	C: Δt^1	E: Δt^3
B: Δt^0	D: Δt^2	

Module 6: Numerical optimization

Question 6 Consider an objective function J(x) for $x \in \mathbb{R}$. Near some unspecified x_0 , J can be approximated by $J(x_0 + h) = 4 - 2h^2 + \mathcal{O}(h^3)$ with $|h| \ll 1$. What can be said about J at x_0 ? It is a:

A:	Unanswered	E: Global maximum
B:	Local minimum	F: Zero point (root)
C:	Local maximum	G: Inflection point
D:	Global minimum	H: None of the above

Question 7 Consider minimizing f(x). Which of the following is *false*?

- i. The golden-section search is guaranteed to reduce the width interval by a factor of $(1 + \sqrt{5})/2$ at each successful iteration
- ii. Newton minimizing f(x) is equivalent to finding a root of f'(x)

iii. If Newton converges to a minimum it will converge quadratically

iv. Steepest descent is guaranteed to converge to the global minimum

v. The Nelder-Mead simplex method requires d+1 evaluations of f to generate the initial simplex if x is d-dimensional

A: Unanswered	C: ii	E: iv	G: All are true
B: i	D: iii	F: v	H: All are false

Question 8 A rectangular cold storage box with square base of edge length l meters, height h meters and perfectly insulated top has a total volume of 10 m^3 . All other sides are uninsulated. The goal is to find l such that heat loss is minimized.

Apply Newton's method for optimization to minimize a suitable objective function (assume heat loss is proportional to surface area). Perform the update in terms of l, starting with an initial estimate $l_0 = 1.0$. What is l_1 to two decimal places?

A: Unans	wered C: 1.46	E: 1	.23 G:	2.46
B: 0.46	D: 1.19	F: 0.	.54 H:	1.54

Question 9 Consider \tilde{x} the unique minimum of the function $f(x) = 7x - \ln(x)$. Using Newton's method for minimization, and starting from $x_0 = 0.1$, what is the error in the approximation after one iteration?

A: Unanswered	C: 0.0129	E: 0.000129
B: 0.129	D: 0.00129	F: 0.0000129

Question 10 Steepest descent for minimizing f(x, y) in 2-dimensions requires the gradient: $\nabla f(x_i, y_i)$ on iteration *i*. Assuming the function $\nabla f(x, y)$ is not known, it can be approximated at (x_i, y_i) by a difference rule (e.g. forward/backward/central differences). What is the *minimum* number of samples of $f(\cdot)$ required to approximate the gradient at (x_i, y_i) in this way?

A: Unanswered	C: 2	E: 4
B: 1	D: 3	F: 5