Applied Numerical Analysis – Homework # 4

Numerical Integration and Differentiation

Numerical Differentiation

Question 1 Identify the following difference schemes:

1.

$$f'(x) \approx \frac{1}{h} \left[f(x+h) - f(x-h) \right]$$

2.

$$f'(x) \approx \frac{1}{h} \left[f(x) - f(x-h) \right].$$

3.

$$f'(x) \approx \frac{1}{h} \left[f(x+h) - f(x) \right].$$

as Forward Differences (FD), Backward Differences (BD), Central Differences (CD), or None of these.

A:	1.	CD; 2.	BD; 3.	FD	C:	1.	None; 2.	BD; 3.	FD
B:	1.	CD; 2.	FD; 3.	BD	D:	1.	None; 2.	FD; 3.	BD

Question 2 Given the following numerical differentiation schemes:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} + O(h)$$

$$f'(x_0) = \frac{f(x_0) - f(x_0 - h)}{h} + O(h)$$

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} + O(h^2)$$

Use one of these formulas to determine, as accurately as possible, an approximation for f'(0.0) using the data in the following table:

x	f(x)
0.0	1.0
0.3	1.3
0.6	1.8
0.9	2.4
1.2	3.3

The most accurate value for f'(0.0) is:

Question 3 Given the numerical differentiation schemes and the table with data in Question 2. Use one of these formulas to determine, as accurately as possible, an approximation for f'(1.2):

A: 2.40 B: 2.55 C: 2.87 D: 3.	2.46	B: 2.55	C: 2.87	D: 3.00
-------------------------------	------	-----------	---------	---------

Question 4 Given the numerical differentiation schemes and the table with data in Question 2. Use one of these formulas to determine, as accurately as possible, an approximation for f'(0.3):

Question 5 Given the following numerical differentiation schemes:

$$\begin{aligned} f'(x_0) &= \frac{f(x_0+h) - f(x_0)}{h} + O(h) \\ f'(x_0) &= \frac{f(x_0) - f(x_0-h)}{h} + O(h) \\ f'(x_0) &= \frac{f(x_0+h) - f(x_0-h)}{2h} + O(h^2) \\ f'(x_0) &= \frac{1}{2h} \Big[-3 f(x_0) + 4f(x_0+h) - f(x_0+2h) \Big] + O(h^2) \\ f'(x_0) &= \frac{1}{2h} \Big[3f(x_0) - 4f(x_0-h) + f(x_0-2h) \Big] + O(h^2) \\ f'(x_0) &= \frac{1}{12h} \Big[f(x_0-2h) - 8f(x_0-h) + 8f(x_0+h) - f(x_0+2h) \Big] + O(h^4). \end{aligned}$$

Use one of these formulas to determine, as accurately as possible, an approximation for f'(2.1) using the data in the following table:

$$\begin{array}{c|c|c} x & f(x) \\ \hline 2.1 & 1.7 \\ 2.2 & 1.3 \\ 2.3 & 1.1 \\ 2.4 & 0.9 \\ 2.5 & 0.7 \\ 2.6 & 0.6 \end{array}$$

The most accurate approximation to f'(2.1) is:

Question 6 Given the numerical differentiation schemes and the table with data in Question 5. Use one of these formulas to determine, as accurately as possible, an approximation for f'(2.3):

Question 7 Given the numerical differentiation schemes and the table with data in Question 5. Use one of these formulas to determine, as accurately as possible, an approximation for f'(2.6):

Question 8 Consider the one-sided difference formula for the 1st-derivative of f(x):

$$f'(x) \approx \frac{1}{2h} \left[2f(x+3h) - 7f(x+2h) + 10f(x+h) - 5f(x) \right]$$

What is the order of the truncation error of this approximation?

A: $\mathcal{O}(h)$

B: $\mathcal{O}(h^2)$ C: $\mathcal{O}(h^3)$ D: $\mathcal{O}(h^4)$ E: The approximation is exact. F: The approximation is not consistent (error $\mathcal{O}(1)$).

Question 9 Consider approximating the first derivative of the function $f(x) = x^2$ at x = 0. Use two different approximations: (a) forward finite differences, and (b) central finite differences, with a stepsize of h = 0.5 in both cases. What is the approximation of the derivative in cases (a) and (b) respectively?

A: 0.25 and 0.00	E: $0.00 \text{ and } 0.00$
B: 0.00 and 0.50	F: 1.00 and 0.00
C: 0.00 and 0.25	G: $0.50 \text{ and } 0.50$
D: $0.50 \text{ and } 0.00$	H: None of these.

Question 10 The central difference formula for the first-derivative is

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{6} f^{(3)}(\xi), \quad x-h < \xi < x+h.$$

Suppose that when evaluating f(x + h) and f(x - h) we encounter round-off errors, which are bounded by some number $\varepsilon = 5 \cdot 10^{-6}$; moreover, suppose that $f^{(3)}$ is bounded in a neighborhood of x = 0.9 by a number M = 0.7. We want to approximate f'(0.9). Determine the optimal choice for the stepsize h.

A: 0.100	C: 0.019	E: 0.005	G: 0.080
B: 0.025	D: 0.001	F: 0.050	H: 0.028

Numerical integration

Question 11 Use an open Newton-Cotes formula with 2 nodes to approximate the integral

$$\int_0^1 \sqrt{1+x} \, dx$$

Hint: the nodes of an 2-point open Newton-Cotes formula are identical to the interior nodes of a 4-point closed Newton-Cotes formula.

A: 1.2228	C: 1.2071	E: 1.2247	G: 1.2059
B: 1.2190	D: 1.2189	F: 1.2203	H: 1.2208

Question 12 Find the degree of precision of the quadrature formula

$$\int_{-1}^{1} f(x) dx \approx \frac{2}{27} \left[8f\left(-\frac{3}{4}\right) + 11f(0) + 8f\left(\frac{3}{4}\right) \right].$$
A: 0
B: 1
C: 2
E: 4
G: 6
H: 7
H: 7

Question 13 Find the weights w_0 and w_1 such that the quadrature rule

$$\int_{-1}^{1} f(x) \, \mathrm{d}x \approx w_0 f(-\frac{1}{2}) + w_1 f(\frac{1}{2})$$

has degree of precision 1.

A: $w_0 =$	$w_1 = 2$	E: $w_0 = -w_1 = 2$
B: $w_0 =$	$w_1 = 1$	F: $w_0 = -w_1 = 1$
C: $w_0 =$	$w_1 = \frac{1}{2}$	G: $w_0 = -w_1 = \frac{1}{2}$
D: $w_0 =$	$w_1 = \frac{1}{4}$	H: $w_0 = -w_1 = \frac{1}{4}$

Question 14 Find the weights w_0 and w_1 such that the quadrature rule

$$\int_{-1}^{1} f(x) \, \mathrm{d}x \approx w_0 f(-a) + w_1 f(a)$$

has degree of precision at least 1 for any node locations -a, a.

A:
$$w_0 = w_1 = 2$$
 E: $w_0 = -w_1 = 2$

 B: $w_0 = w_1 = 1$
 F: $w_0 = -w_1 = 1$

 C: $w_0 = w_1 = \frac{1}{2}$
 G: $w_0 = -w_1 = \frac{1}{2}$

 D: $w_0 = w_1 = \frac{1}{a}$
 H: $w_0 = -w_1 = \frac{1}{a}$

Question 15 Find the value of *a* such that the quadrature rule

$$\int_{-1}^{1} f(x) \,\mathrm{d}x \approx f(-a) + f(a)$$

has degree of precision 3.

A:
$$a = 1/\sqrt{2}$$

B: $a = 1/\sqrt{3}$
C: $a = 1/2$
D: $a = 1$

Question 16 Use the trapezoidal rule to approximate the integral

$$\int_{\circ} 1 \cdot \, dx \, dy$$

where \circ is the circle with origin (x = 0, y = 0) and radius 1. [Hint: First convert the integral to polar coordinates r and θ , and then apply the trapezoidal rule to the r and θ integrals individually.]

Question 17 Consider the integral:

$$I = \int_{-1}^{1} x^2 + 1 \, dx$$

Compute the exact value I of the integral, as well as the Trapezoidal Rule approximation I_3 with nodes $x_1 = -1$, $x_2 = 0$, and $x_3 = 1$.

E: $I = 1.33$ and $I_3 = 1.35$
F: $I = 1.33$ and $I_3 = 1.00$
G: $I = 2.67$ and $I_3 = 2.50$
H: $I = 1.33$ and $I_3 = 1.52$

Question 18 Consider the integral:

$$I = \int_{-1}^{1} e^x \, dx$$

Compute the exact value I of the integral, as well as the Gaussian Quadrature approximation I_3 . The Gaussian Quadrature nodes and weights given in the table.

	i	x_i	w_i	
	1	-0.774597	0.555556	-
	2	0.000000	0.888889	
	3	0.774597	0.555556	
A: $I = 2.12$ and $I_3 = 2.12$			E: $I = 2.3$	35 and $I_3 = 2.38$
B: $I = 2.35$ and $I_3 = 2.37$			F: $I = 2.1$	2 and $I_3 = 2.11$
C: $I = 2.12$ and $I_3 = 2.15$			G: $I = 2.3$	$I_{3} = 2.35$
D: $I = 2.12$ and $I_3 = 2.14$			H: $I = 2.3$	$I_{3} = 2.33$

Question 19 Consider the integral:

$$I = \int_0^1 e^x \, dx$$

Compute the exact value I of the integral, as well as the Gaussian Quadrature approximation I_3 . The Gaussian Quadrature nodes and weights given in the table.

	i	x_i	w_i	
	1	-0.774597	0.555556	
	2	0.000000	0.888889	
	3	0.774597	0.555556	
A: $I = 2.35$ and $I_3 = 2.35$ B: $I = 2.35$ and $I_3 = 2.30$ C: $I = 1.72$ and $I_3 = 1.71$ D: $I = 2.35$ and $I_3 = 2.00$			E: $I = 1.7$ F: $I = 1.7$ G: $I = 2.3$ H: $I = 1.7$	22 and $I_3 = 1.72$ 22 and $I_3 = 1.75$ 25 and $I_3 = 2.34$ 22 and $I_3 = 1.73$

Quiz 2013 – 45 mins

Question 20 (Numerical diff.) Consider the functions $f(x) = \sin(x)$ and $g(x) = x^2$. We use the forward difference scheme

$$f'(x) \approx D_F(f, x) = \frac{f(x+h) - f(x)}{h}$$

and the backward difference scheme

$$f'(x) \approx D_B(f, x) = \frac{f(x) - f(x - h)}{h},$$

to compute derivatives, with the same value of h in both cases. Which one of the following is true?

- A: Unanswered
- B: $D_F(f,0) = D_B(f,0)$ and $D_F(g,0) = D_B(g,0)$ C: $D_F(f,0) = D_B(f,0)$ and $D_F(g,0) = -D_B(g,0)$ D: $D_F(f,0) = -D_B(f,0)$ and $D_F(g,0) = D_B(g,0)$ E: $D_F(f,0) = -D_B(f,0)$ and $D_F(g,0) = -D_B(g,0)$
- F: None of these.

Question 21 (Numerical diff.) Consider the function $f(x) = e^x$ which is differentiated using the forward difference scheme $D_F(f, x)$ (see e.g. Question 20). We consider all possible values of x and stepsize h > 0. Which one of the following is true of the error $\epsilon := f'(x) - D_F(f, x)$? [Hint: Examine the difference scheme applied to the function graphically.]

- A: Unanswered
- B: $\epsilon = 0$ always
- C: $\epsilon > 0$ always
- D: $\epsilon < 0$ always
- E: ϵ can be positive or negative depending on h
- F: ϵ can be positive or negative depending on x
- G: ϵ can be positive or negative depending on both x and h

Question 22 (Numerical diff.) Apply the central difference scheme:

$$D_C(f,x) = \frac{f(x+h) - f(x-h)}{2h}$$

to a 2nd-degree polynomial (a parabola). Which one of the following is true of the error $\epsilon := f'(x) - D_C(f, x)$?

A: Unanswered

B: $\epsilon = 0$ always

C: $\epsilon > 0$ always

D: $\epsilon < 0$ always

E: ϵ can be positive or negative depending on h

- F: ϵ can be positive or negative depending on x
- G: ϵ can be positive or negative depending on both x and h

Question 23 (Numerical diff.) Consider this proposal for a finite difference scheme:

$$f'(x) = \frac{2f(x+2h) - f(x+h) - f(x)}{6h} + \epsilon.$$

How does the error ϵ behave in terms of h?

A: UnansweredC: $\mathcal{O}(h)$ E: $\mathcal{O}(h^2)$ B: $\mathcal{O}(1)$ - inconsistent ruleD: $\mathcal{O}(h^{1.5})$ F: $\mathcal{O}(h^3)$

Question 24 (Numerical int.) Consider the quadrature rule:

$$\int_{-1}^{1} f(x) \, dx \approx Q(f, [-1, 1]) = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$

defined on the interval [-1, 1]. What is Q(f, [0, 2]), the approximation of the integral of:

$$f(x) = x^3$$

on the interval [0, 2]?

A: Unanswered
 C: 3
 E:
$$\frac{7}{2} + \frac{1}{\sqrt{3}}$$
 G: $\frac{6}{\sqrt{3}}$

 B: 0
 D: 4
 F: $\frac{9}{2} - \frac{1}{\sqrt{3}}$
 H: $\frac{7}{\sqrt{3}}$

Question 25 (Numerical int.) Consider the integration rule on the interval [0, 2]:

$$Q(f) = \frac{1}{3}f(0) + \frac{4}{3}f(1) + \frac{1}{3}f(2)$$

What is the degree of precision of this rule?

A: Unanswered	C: 1	E: 3
B: 0	D: 2	F: 4

Question 26 (Numerical int.) Find the node x_1 , and the weight w_1 such that the quadrature formula

$$\int_0^1 f(x)dx \approx Q(f, [0, 1]) = \frac{1}{2}f\left(\frac{1}{3}\right) + w_1f(x_1)$$

has the highest possible degree of precision. What is the value of x_1 ?

A: Unanswered
 C:
$$\frac{1}{3}$$
 E: $\frac{1}{2}$
 G: $\frac{2}{3}$

 B: $\frac{2}{9}$
 D: $\frac{4}{9}$
 F: $\frac{5}{9}$
 H: $\frac{7}{9}$

Question 27 (Interpolation) Function $f(x) = ax^3 + bx^2 + cx + d$ is a cubic polynomial $(a \neq 0, b \neq 0)$. Six distinct locations $0 = x_0 < x_1 < \cdots < x_5 = 1$ are sampled from f(x) and used to construct the following interpolants on the interval [0, 1]:

- a polynomial using the Lagrange basis
- a *natural* cubic spline (2nd-derivatives at the end points are zero)

Which of the following statements is true? On the interval [0, 1]:

- A: Unanswered
- B: both interpolants are identical to f(x)
- C: only the Lagrange polynomial is identical to f(x)
- D: only the natural cubic spline is identical to f(x)
- E: neither interpolant is identical to f(x)