Applied Numerical Analysis – Homework $#3$

Interpolation: Splines, Multiple dimensions, Radial Bases, Least-Squares

Splines

Question 1 Consider a cubic spline interpolation of a set of data points, and derivatives of this spline at interior data points. The spline itself is continuous. Which of the following statements is true in addition?

- A: None of the derivatives are continuous.
- B: Only the 1st derivatives are continuous.
- C: Only the 2nd derivatives are continuous.
- D: Only the 1st and 2nd derivatives are continuous.
- E: Only the 2nd and 3rd derivatives are continuous.
- F: Only the 1st, 2nd and 3rd derivatives are continuous.
- G: Cubic splines are infinitely differentiable.

Question 2 The following n data points, (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) are given. For conducting quadratic spline interpolation the x -data needs to be

- A: equally spaced
- B: in ascending or descending order
- C: integers
- D: positive

Question 3 The following incomplete y vs. x data is given:

$$
\begin{array}{c|cccc}\nx & 1 & 2 & 4 & 6 & 7 \\
\hline\ny & 5 & 11 & ?? & ?? & 32\n\end{array}
$$

The data is fit by quadratic spline interpolants given by

where a, b, c and d are constants. What is the value of c ?

A: -303.00 B: -144.50 C: 0.0000 D: 14.000

Question 4 Which of the following functions is not a spline?

 A :

B:

 $C:$

$$
f(x) = \begin{cases} x+1 & x \in [0,1] \\ 2 & x \in [1,2] \end{cases}
$$

$$
f(x) = \begin{cases} x^2+1 & x \in [0,1] \\ 2x & x \in [1,2] \end{cases}
$$

$$
f(x) = \begin{cases} x^3 - 2x^2 + 3x & x \in [0,1] \\ x^2 + 1 & x \in [1,2] \end{cases}
$$

D:

.

$$
f(x) = \begin{cases} 2x^3 - 4\frac{1}{2}x^2 + 5x - 1\frac{1}{2} & x \in [0, 1] \\ 3x^3 - 7\frac{1}{2}x^2 + 6x - \frac{1}{2} & x \in [1, 2] \end{cases}
$$

Bivariate Interpolation

Question 5 (4 pts) Given 4 data points (x_i, f_i) , which form a rectangle (see table). Interpolate at the point $(x = 5/3, y = -4/3)$ using a bilinear interpolator. Hint: the bilinear interpolator, which interpolates a function f at the points $P_i = (x'_i, y'_i)$ with $P_1 = (-1, -1), P_2 = (1, -1),$ $P_3 = (1, 1)$, and $P_4 = (-1, 1)$ is:

$$
\phi(x',y') = \frac{f_1}{4}(1-x')(1-y') + \frac{f_2}{4}(1+x')(1-y') + \frac{f_3}{4}(1+x')(1+y') + \frac{f_4}{4}(1-x')(1+y')
$$

Question 6 Given 4 data points (x_i, f_i) , which form a rectangle (see table). Interpolate at the point $(x = 2/3, y = 4/3)$ using a bilinear interpolator.

Question 7 Linearly interpolate the data given in the table at the point $(x, y) = (2/3, 1)$.

Question 8 Linearly interpolate the function $f(x, y) = \sqrt{x + y}$ at the point $(x, y) = (2/3, 1/2)$ using the function values $f(x_i, y_i)$ at the points given in the table.

Question 9 The lift coefficient C_l is given for different angles of attack α and flap angles δ . Linearly interpolate the data given in the table, to determine the lift coefficient at $(\alpha, \delta) = (4, 1)$.

Radial Basis Functions

Question 10 Given 4 data points (see table). We want to interpolate the data using the radial function $\varphi(r) = r$. The interpolation condition leads to a linear system of dimension 4, which can be written as $A a = f$, where a contains the unknown coefficients and f is the vector with given function values $\mathbf{f} = (f_1 \quad f_2 \quad f_3 \quad f_4)^T$. Compute the element $A_{2,3}$ of the matrix **A**.

Question 11 Given data in the table, we want to interpolate the data using the radial function $\varphi(r) = e^{-r}$. The interpolation condition leads to a linear system of dimension 3, which can be written as $A a = f$, where a contains the unknown coefficients and f is the vector with given function values $\mathbf{f} = (f_1 \quad f_2 \quad f_3)^T$. We can obtain **a** by solving $\mathbf{a} = \mathbf{A}^{-1} \mathbf{f}$. Compute the matrix A.

A:
\n
$$
\begin{array}{c|c|c|c|c} i & 1 & 2 & 3 \ \hline x_i & 0 & 1 & 1 \ y_i & 0 & 0 & 1 \ f_i & -2 & -1 & -3 \end{array}
$$
\nA:
\nC:
\n
$$
\mathbf{A} = \begin{bmatrix} 1.000 & 0.000 & 0.000 \\ 0.000 & 1.000 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix};
$$
\n
$$
\mathbf{A} = \begin{bmatrix} 1.000 & -0.378 & -0.146 \\ -0.378 & 1.000 & -0.378 \\ -0.146 & -0.378 & 1.000 \end{bmatrix};
$$
\nB:
\n
$$
\mathbf{A} = \begin{bmatrix} 1.000 & 0.368 & 0.243 \\ 0.368 & 1.000 & 0.368 \\ 0.243 & 0.368 & 1.000 \end{bmatrix};
$$
\n
$$
\mathbf{A} = \begin{bmatrix} 0.000 & 1.000 & 1.412 \\ 1.000 & 0.000 & 1.000 \\ 1.412 & 1.000 & 0.000 \end{bmatrix};
$$

Least-Squares Regression

Question 12 The data in the following table is to be fitted with a linear function:

$$
y(x) = ax + b.
$$

Set up the normal equations for least squares and determine a and b .

The coefficients a and b are:

Question 13 You want to calibrate a pitot tube. From theory, the airspeed v is given by the pressure difference Δp according to the equation:

$$
v(q) = a_1 \sqrt{\Delta p} + a_2,
$$

where v is in [m/s] and Δp is in [bar]. Estimate the coefficients a_1 and a_2 from the given data, using least-squares.

The coefficient a_1 is:

Question 14 The data in the following table is to be fitted with the following function:

$$
y(x) = a_1 \frac{1}{1 + e^x} + a_2 x.
$$

Set up the normal equations for least squares and determine a_1 and a_2 .

The coefficients a_1 and a_2 are:

Question 15 (5 pts) The upward velocity of a rocket has been measured with a tracking system as a function of time (see table). From theory, it is known that the velocity within the first 20 seconds after launch ($t = 0$ seconds) can be well approximated by a function:

$$
v(t) = a_1 \ln \left(\frac{1}{1 - 0.02t} \right) + a_2 t, \quad 0 \le t \le 30,
$$

where v is in $[m/s]$ and t is in [s]. Estimate the coefficients a_1 and a_2 from the given data using least-squares. (Hint: set-up the normal equations to 4 decimal places to reduce round-off errors.)

The coefficient a_1 is

The Bigger Picture

Question 16 Suppose we define an approximating function $\phi(x) = \sum_{i=1}^{I} a_i b_i(x)$, where $b_i(x)$ are given functions of x. To determine the coefficients $\{a_i : i = 1...I\}$ from given data $\{f_i :$ $i = 1 \dots N$ at N distinct points, we can either use interpolation or least-squares approximation. Interpolation and least-squares approximation

- A: always provide the same coefficients;
- B: provide the same coefficients if the interpolation problem is uniquely solvable;
- C: provide the same coefficients if the data are not noisy;
- D: provide the same coefficients if $N = I$;
- E: provide the same coefficients if $N = I$ and, at the same time, the data are not noisy;
- F: never provide the same coefficients.

Question 17 A robot needs to follow a path that passes through six points. To find the shortest path that is also smooth you would recommend which of the following?

- A: Pass a fifth order polynomial through the data
- B: Pass linear splines through the data
- C: Pass quadratic splines through the data
- D: Regress the data to a second order polynomial

Quiz 2013 – 45 mins

Question 18 (Splines) We wish to construct a very smooth spline interpolant $p(x)$ on the interval $[a, b]$. We divide the interval up into sub-intervals based on the grid of 8 points:

$$
a = x_0 < x_1 < \dots < x_7 = b,
$$

and approximate $p(x)$ as a different polynomial on each of these sub-intervals - i.e. a typical spline.

We require that $p(x)$ is continuous, and has continuous derivatives up to and including $p^{(5)}(x)$ $\frac{d^5p}{dx^5}$ at all points in the interval. Furthermore we require that $p(x)$ interpolates the data points \bar{f}_0, \ldots, f_7 at the grid locations. We impose no further boundary conditions.

How many constraints do these requirements imply on $p(x)$?

Question 19 (Splines) The function $f(x) = a + bx + cx^2 + dx^3 + ex^4$ is a fourth order polynomial. We wish to interpolate this function. Two data sets, extracted from this function, are available: Set 1

$$
\begin{array}{c|cccc}\nx_i & -2 & -1 & 0 & 1 & 2 \\
\hline\nf_i & 11 & 1 & 1 & 5 & 31\n\end{array}
$$

Set 2

$$
\begin{array}{c|cccccc} x_i & -2 & -1.5 & 0.5 & 1.5 & 2 \\ \hline f_i & 11 & 3.44 & 1.94 & 13.19 & 31 \\ \end{array}
$$

Four interpolants are constructed labeled (i) to (iv):

- (i) a fourth order polynomial using data set 1, using a Lagrange basis
- (ii) a fourth order polynomial using data set 2, using a Newton basis
- (iii) a cubic spline using data set 1, with natural boundary conditions
- (iv) a cubic spline using data set 2, with natural boundary conditions

Which of these four interpolants are identical? [Note: no calculation is necessary].

Question 20 (Splines) Consider the data set

$$
\begin{array}{c|cc} i & 0 & 1 & 2 \\ \hline x_i & 0 & 1 & 2 \\ f_i & 0 & 1 & 0 \end{array}
$$

The data is fit by a natural cubic spline (i.e. the second derivatives at the boundaries are zero). What is the value of the spline at $x = \frac{1}{2}$? [Hint: use symmetry arguments to simplify the calculation.]

A: Unanswered C:
$$
\frac{3}{4}
$$
 E: $\frac{7}{8}$ G: $\frac{11}{16}$
B: $\frac{1}{2}$ D: $\frac{5}{8}$ F: $\frac{9}{16}$ H: $\frac{13}{16}$

Question 21 (Tensor-product interpolation) We wish to interpolate the function of 10 variables $f(x_1, x_2, \ldots, x_{10})$, and use a quadratic polynomial approximation in each variable x_i . We construct the tensor-product grid. How many grid points do we obtain?

Question 22 (Radial basis) Interpolate the data given in the table using the radial function $\varphi(r) = r^2$. The interpolant is given by

$$
p(\mathbf{x}) = a_0 \varphi(|\mathbf{x} - \mathbf{x}_0|) + a_1 \varphi(|\mathbf{x} - \mathbf{x}_1|) + a_2 \varphi(|\mathbf{x} - \mathbf{x}_2|),
$$

where $\mathbf{x} = (x, y)$ etc. What is the coefficient a_0 , of the radial basis function centered at \mathbf{x}_0 ?

Question 23 (Radial basis) Radial basis function interpolation is performed with the function:

$$
\varphi(r) = \begin{cases} \frac{1}{2} (\cos(10\pi r) + 1) & \text{for } r < \frac{1}{10} \\ 0 & \text{for } r \ge \frac{1}{10} \end{cases}
$$

It is applied to the data set defined on the unit square:

$$
\begin{array}{c|cccccc}\n i & 1 & 2 & 3 & 4 \\
\hline\nx_i & -1 & 1 & 1 & -1 \\
y_i & -1 & -1 & 1 & -1 \\
f_i & 1 & 2 & 3 & 4\n\end{array}
$$

What is the value of the interpolant at $(x, y) = (0, 0)$? [Note: *it is not necessary to construct the* interpolant!]

Question 24 (Interpolation) You've learned how to find the interpolant of a data-set by setting up a set of linear interpolation conditions, and inverting the resulting matrix to find the coefficients a_i . Which of the following interpolants does not allow this approach?

Question 25 (Polynomial Interpolation) The manufacturing cost p of a product depends on two parameters α and β . Use linear interpolation on the data in the table to approximate p.

If the price of product $p = 65$, what is the implied relationship between α and β ?

A: Unanswered B: $\alpha = 4\beta$ C: $\alpha = -4\beta$ D: $\alpha = 130 - 4\beta$

E: $\alpha = 130 + 4\beta$ F: $\alpha = \beta/4$ G: $\alpha = -\beta/4$ H: $\alpha = \beta = 0$