Applied Numerical Analysis – Homework #3

Interpolation: Splines, Multiple dimensions, Radial Bases, Least-Squares

Splines

Question 1 Consider a cubic spline interpolation of a set of data points, and derivatives of this spline at interior data points. The spline itself is continuous. Which of the following statements is true in addition?

- A: None of the derivatives are continuous.
- B: Only the 1st derivatives are continuous.
- C: Only the 2nd derivatives are continuous.
- D: Only the 1st and 2nd derivatives are continuous.
- E: Only the 2nd and 3rd derivatives are continuous.
- F: Only the 1st, 2nd and 3rd derivatives are continuous.
- G: Cubic splines are infinitely differentiable.

Question 2 The following *n* data points, (x_1, y_1) , (x_2, y_2) ,..., (x_n, y_n) are given. For conducting quadratic spline interpolation the *x*-data needs to be

- A: equally spaced
- B: in ascending or descending order
- C: integers
- D: positive

Question 3 The following incomplete y vs. x data is given:

The data is fit by quadratic spline interpolants given by

f(x) = ax - 1,	$1 \leq x \leq 2$
$f(x) = -2x^2 + 14x - 9,$	$2 \leq x \leq 4$
$f(x) = bx^2 + cx + d,$	$4 \leq x \leq 6$
$f(x) = 25x^2 - 303x + 928,$	$6 \leq x \leq 7$

where a, b, c and d are constants. What is the value of c?

Question 4 Which of the following functions is not a spline?

A:

$$f(x) = \begin{cases} x+1 & x \in [0,1] \\ 2 & x \in [1,2] \end{cases}$$
$$f(x) = \begin{cases} x^2+1 & x \in [0,1] \\ 2x & x \in [1,2] \end{cases}$$
$$f(x) = \begin{cases} x^3-2x^2+3x & x \in [0,1] \\ x^2+1 & x \in [1,2] \end{cases}$$

C:

B:

D:

.

$$f(x) = \begin{cases} 2x^3 - 4\frac{1}{2}x^2 + 5x - 1\frac{1}{2} & x \in [0, 1] \\ 3x^3 - 7\frac{1}{2}x^2 + 6x - \frac{1}{2} & x \in [1, 2] \end{cases}$$

Bivariate Interpolation

Question 5 (4 pts) Given 4 data points (x_i, f_i) , which form a rectangle (see table). Interpolate at the point (x = 5/3, y = -4/3) using a bilinear interpolator. Hint: the bilinear interpolator, which interpolates a function f at the points $P_i = (x'_i, y'_i)$ with $P_1 = (-1, -1)$, $P_2 = (1, -1)$, $P_3 = (1, 1)$, and $P_4 = (-1, 1)$ is:

$$\phi(x',y') = \frac{f_1}{4}(1-x')(1-y') + \frac{f_2}{4}(1+x')(1-y') + \frac{f_3}{4}(1+x')(1+y') + \frac{f_4}{4}(1-x')(1+y')$$

i	1	2	3	4
x_i	1	2	2	1
y_i	-3	-3	-1	-1
f_i	1.3	1.5	0.3	0.2

A: 0.46	C: -0.32	E: 1.68	G: -0.67
B: -0.21	D: 2.52	F: 1.12	H: 1.00

Question 6 Given 4 data points (x_i, f_i) , which form a rectangle (see table). Interpolate at the point (x = 2/3, y = 4/3) using a bilinear interpolator.

	i	1	2	3	4	
	$\overline{x_i}$	0	1	1	0	
	y_i	0	0	2	2	
	f_i	1.7	3.9	0.6	1.6	
A: 3.88	C: -0.44			E: 1	.68	G: 0.49
B: -0.32	D: 2.53			F: 1	.95	H: 2.00

Question 7 Linearly interpolate the data given in the table at the point (x, y) = (2/3, 1).

		i	1	2	3			
		x_i	0	1	1			
		y_i	0	1	2			
		f_i	2	3	1			
A: 0.34	C: 1.14			F	E: 0.	95	G: 1.05	
B: -1.00	D: 1.95			Η	F: 2.	00	H: 2.20	

Question 8 Linearly interpolate the function $f(x, y) = \sqrt{x + y}$ at the point (x, y) = (2/3, 1/2) using the function values $f(x_i, y_i)$ at the points given in the table.

i	1	2	3
x_i	0	1	1
y_i	0	0	1

A: 0.78	C: 0.87	E: 1.71	G: 0.72
B: 1.14	D: 1.41	F: 1.37	H: 2.42

Question 9 The lift coefficient C_l is given for different angles of attack α and flap angles δ . Linearly interpolate the data given in the table, to determine the lift coefficient at $(\alpha, \delta) = (4, 1)$.

		$i \mid 1$	2	3	
	_	$\alpha_i = 0$	8	8	
		$\begin{array}{c c} \alpha_i & 0 \\ \delta_i & 0 \end{array}$	0	4	
		$C_{l,i} \mid 0.20$	1.00	1.16	
A: 0.20	C: 0.64		E:	0.92	G: 0.88
B: 0.86	D: 0.45		F:	0.48	H: 0.52

Radial Basis Functions

Question 10 Given 4 data points (see table). We want to interpolate the data using the radial function $\varphi(r) = r$. The interpolation condition leads to a linear system of dimension 4, which can be written as $\mathbf{A} \mathbf{a} = \mathbf{f}$, where \mathbf{a} contains the unknown coefficients and \mathbf{f} is the vector with given function values $\mathbf{f} = \begin{pmatrix} f_1 & f_2 & f_3 \end{pmatrix}^T$. Compute the element $A_{2,3}$ of the matrix \mathbf{A} .

	i	1	2	3	4	
	x_i	0	1	2	2	
	y_i	-4				
	f_i	-3	2	6	9	
A: 0.00 D:	1.41					G: 0.12
B: 4.12 E:	1.00					H: 0.50
C: 5.10 F:	6.32					

Question 11 Given data in the table, we want to interpolate the data using the radial function $\varphi(r) = e^{-r}$. The interpolation condition leads to a linear system of dimension 3, which can be written as $\mathbf{A} \mathbf{a} = \mathbf{f}$, where \mathbf{a} contains the unknown coefficients and \mathbf{f} is the vector with given function values $\mathbf{f} = \begin{pmatrix} f_1 & f_2 & f_3 \end{pmatrix}^T$. We can obtain \mathbf{a} by solving $\mathbf{a} = \mathbf{A}^{-1}\mathbf{f}$. Compute the matrix \mathbf{A} .

$$\mathbf{A}: \qquad \qquad \mathbf{A}: \qquad \mathbf{A}: \qquad \mathbf{A}: \qquad \qquad \mathbf{A}: \qquad \qquad \mathbf{A}: \qquad$$

Least-Squares Regression

Question 12 The data in the following table is to be fitted with a linear function:

$$y(x) = ax + b.$$

Set up the normal equations for least squares and determine a and b.

x	y
0.1	21
0.2	18
0.4	15
0.5	15
0.8	12

The coefficients a and b are:

A: $a = -10.99$ and $b = 15.00$	E: $a = -12.50$ and $b = 12.90$
B: $a = -0.12$ and $b = 20.50$	F: $a = 11.95$ and $b = 0.46$
C: $a = 21.05$ and $b = 13.45$	G: $a = 2.00$ and $b = 0.75$
D: $a = -12.00$ and $b = 21.00$	H: $a = -9.12$ and $b = 1.16$

Question 13 You want to calibrate a pitot tube. From theory, the airspeed v is given by the pressure difference Δp according to the equation:

$$v(q) = a_1 \sqrt{\Delta p} + a_2$$

where v is in [m/s] and Δp is in [bar]. Estimate the coefficients a_1 and a_2 from the given data, using least-squares.

$\Delta p \; [\text{bar}]$	v [m/s]
0.01	34
0.02	68
0.03	83
0.04	92

The coefficient a_1 is:

A: $a_1 = 412$	D: $a_1 = 212$	G: $a_1 = 220$
B: $a_1 = 581$	E: $a_1 = 128$	H: $a_1 = -18$
C: $a_1 = -20$	F: $a_1 = 75$	

Question 14 The data in the following table is to be fitted with the following function:

$$y(x) = a_1 \frac{1}{1 + e^x} + a_2 x.$$

Set up the normal equations for least squares and determine a_1 and a_2 .

x	y
-7	2.6
-3	2.8
-1	2.2
2	0.4
9	0.4

The coefficients a_1 and a_2 are:

A: $a_1 = 2.53$ and $a_2 = 0.07$	E: $a_1 = -2.02$ and $a_2 = 3.11$
B: $a_1 = 2.11$ and $a_2 = 1.31$	F: $a_1 = 4.19$ and $a_2 = 0.00$
C: $a_1 = -4.15$ and $a_2 = 1.05$	G: $a_1 = -2.02$ and $a_2 = 0.00$
D: $a_1 = 3.02$ and $a_2 = 0.05$	H: $a_1 = 4.19$ and $a_2 = 3.11$

Question 15 (5 pts) The upward velocity of a rocket has been measured with a tracking system as a function of time (see table). From theory, it is known that the velocity within the first 20 seconds after launch (t = 0 seconds) can be well approximated by a function:

$$v(t) = a_1 \ln\left(\frac{1}{1 - 0.02t}\right) + a_2 t, \quad 0 \le t \le 30,$$

where v is in [m/s] and t is in [s]. Estimate the coefficients a_1 and a_2 from the given data using least-squares. (Hint: set-up the normal equations to 4 decimal places to reduce round-off errors.)

time t [s]	velocity $v(t)$ [m/s]
0	0
10	126.0
15	261.0
20	420.0

The coefficient a_1 is

A: $a_1 = 2436$	C: $a_1 = 3002$	E: $a_1 = 1450$
B: $a_1 = -68$	D: $a_1 = 2109$	F: $a_1 = -1020$

The Bigger Picture

Question 16 Suppose we define an approximating function $\phi(x) = \sum_{i=1}^{I} a_i b_i(x)$, where $b_i(x)$ are given functions of x. To determine the coefficients $\{a_i : i = 1 \dots I\}$ from given data $\{f_i : i = 1 \dots N\}$ at N distinct points, we can either use interpolation or least-squares approximation. Interpolation and least-squares approximation

- A: always provide the same coefficients;
- B: provide the same coefficients if the interpolation problem is uniquely solvable;
- C: provide the same coefficients if the data are not noisy;
- D: provide the same coefficients if N = I;
- E: provide the same coefficients if N = I and, at the same time, the data are not noisy;
- F: never provide the same coefficients.

Question 17 A robot needs to follow a path that passes through six points. To find the shortest path that is also smooth you would recommend which of the following?

- A: Pass a fifth order polynomial through the data
- B: Pass linear splines through the data
- C: Pass quadratic splines through the data
- D: Regress the data to a second order polynomial

Quiz 2013 – 45 mins

Question 18 (Splines) We wish to construct a very smooth spline interpolant p(x) on the interval [a, b]. We divide the interval up into sub-intervals based on the grid of 8 points:

$$a = x_0 < x_1 < \dots < x_7 = b,$$

and approximate p(x) as a different polynomial on each of these sub-intervals - i.e. a typical spline.

We require that p(x) is continuous, and has continuous derivatives up to and including $p^{(5)}(x) = \frac{d^5p}{dx^5}$ at all points in the interval. Furthermore we require that p(x) interpolates the data points f_0, \ldots, f_7 at the grid locations. We impose no further boundary conditions.

How many constraints do these requirements imply on p(x)?

A: Unanswered	C: 36	E: 44	G: 51
B: 33	D: 42	F: 49	H: 56

Question 19 (Splines) The function $f(x) = a+bx+cx^2+dx^3+ex^4$ is a fourth order polynomial. We wish to interpolate this function. Two data sets, extracted from this function, are available: Set 1

Set 2

Four interpolants are constructed labeled (i) to (iv):

- (i) a fourth order polynomial using data set 1, using a Lagrange basis
- (ii) a fourth order polynomial using data set 2, using a Newton basis
- (iii) a cubic spline using data set 1, with natural boundary conditions
- (iv) a cubic spline using data set 2, with natural boundary conditions

Which of these four interpolants are identical? [Note: no calculation is necessary].

A:	Unanswered	E: $(i)=(ii)$
B:	All same	F: $(i)=(iii)$
\mathbf{C} :	(i) = (ii), (iii) = (iv)	G: $(iii)=(iv)$
D:	(i) = (iii), (ii) = (iv)	H: All different

Question 20 (Splines) Consider the data set

The data is fit by a natural cubic spline (i.e. the second derivatives at the boundaries are zero). What is the value of the spline at $x = \frac{1}{2}$? [Hint: use symmetry arguments to simplify the calculation.]

A: Unanswered	C: $\frac{3}{4}$	E: $\frac{7}{8}$	G: $\frac{11}{16}$
B: $\frac{1}{2}$	D: $\frac{5}{8}$	F: $\frac{9}{16}$	H: $\frac{13}{16}$

Question 21 (Tensor-product interpolation) We wish to interpolate the function of 10 variables $f(x_1, x_2, \ldots, x_{10})$, and use a quadratic polynomial approximation in each variable x_i . We construct the tensor-product grid. How many grid points do we obtain?

A: Unanswered	C: 30	E: 2048	G: 59049
B: 20	D: 1024	F: 19683	H: 177147

Question 22 (Radial basis) Interpolate the data given in the table using the radial function $\varphi(r) = r^2$. The interpolant is given by

$$p(\mathbf{x}) = a_0\varphi(|\mathbf{x} - \mathbf{x}_0|) + a_1\varphi(|\mathbf{x} - \mathbf{x}_1|) + a_2\varphi(|\mathbf{x} - \mathbf{x}_2|),$$

where $\mathbf{x} = (x, y)$ etc. What is the coefficient a_0 , of the radial basis function centered at \mathbf{x}_0 ?

		i 0 1 2	
		$x_i \mid 0 1 1$	
		$y_i \mid 0 1 2$	
		$f_i \mid 0 1 0$	
A: Unanswered B: 0	C: $\frac{1}{8}$ D: $\frac{1}{4}$	E: $\frac{3}{8}$ F: $\frac{1}{2}$	G: 5 H: 5

Question 23 (Radial basis) Radial basis function interpolation is performed with the function:

$$\varphi(r) = \begin{cases} \frac{1}{2} \left(\cos(10\pi r) + 1 \right) & \text{for } r < \frac{1}{10} \\ 0 & \text{for } r \ge \frac{1}{10} \end{cases}$$

It is applied to the data set defined on the unit square:

What is the value of the interpolant at (x, y) = (0, 0)? [Note: it is not necessary to construct the interpolant!]

A: Unanswered	C: 1	E: 2.5	G: 4
B: 0	D: 2	F: 3	

Question 24 (Interpolation) You've learned how to find the interpolant of a data-set by setting up a set of linear interpolation conditions, and inverting the resulting matrix to find the coefficients a_i . Which of the following interpolants does not allow this approach?

A: Unanswered	E: $p(x, y) = a_1 + \ln(1 + a_2 x);$
B: $p(x,y) = a_1x + a_2xy;$	F: $p(x, y) = a_1 + a_2 x^y;$
C: $p(x,y) = a_1 x^2 + a_2 x/y;$	G: $p(x,y) = a_1 x^{2.3} + a_2 y^{1.2};$
D: $p(x,y) = a_1 \ln(x) + a_2 \frac{1}{ y +x};$	H: $p(x,y) = a_1 x^x + a_2 x^4;$

Question 25 (Polynomial Interpolation) The manufacturing cost p of a product depends on two parameters α and β . Use linear interpolation on the data in the table to approximate p.

i	0	1	2	
α_i	0	80	120	
β_i	0	0	5	
p	0	40	70	

If the price of product p = 65, what is the implied relationship between α and β ?

A:	Unanswered
B:	$\alpha = 4\beta$
\mathbf{C} :	$\alpha = -4\beta$
D:	$\alpha = 130-4\beta$

E: $\alpha = 130 + 4\beta$ F: $\alpha = \beta/4$ G: $\alpha = -\beta/4$ H: $\alpha = \beta = 0$