Applied Numerical Analysis – Homework #2

Polynomial Interpolation

Question 1 The problem of univariate polynomial interpolation using a grid N of distinct data points

- A: Has no solution
- B: Has always a unique solution
- C: Has a unique solution if the Chebyshev grid is used
- D: Has a unique solution if the underlying function f is continuously differentiable
- E: Has a unique solution if the Chebyshev grid is used and the underlying function is continuously differentiable

Question 2 Univariate polynomial interpolation converges

- A: Never
- B: Always
- C: Only for equidistant grids X if the underlying function is sufficiently smooth
- D: Only for non-equidistant grids X if the underlying function is sufficiently smooth
- E: Always for a Chebyshev grid
- F: Always for a Chebyshev grid if the underlying function is sufficiently smooth

Question 3 A set of n data points (x_i, f_i) , i = 0, ..., n - 1 is given. What is the minimum degree of polynomial which is guaranteed to be able to interpolate all these points?

A:
$$n+2$$
C: n E: $n-2$ B: $n+1$ D: $n-1$ F: ∞

Question 4 What is the minimum order of the polynomial that interpolates the following points?

	i	0	1	2	3	
	$\overline{x_i}$	-2	-1	0	1	
	f_i	4	1	0	1	
A: 0	C: 2					E: 4
B: 1	D: 3					F: ∞

Question 5 Which of the following functions can not be used as a basis for interpolation?

A: polynomial	C: trigonometric
B: rational functions	D: all of the above can be used

Question 6 Three data points (x_i, f_i) are given in the table below. The Newton representation of the interpolation polynomial is $p(x) = d_0 + d_1 x + d_2 x(x-1)$. Determine the coefficient d_2 .

A: $d_2 = 4$	C: $d_2 = -1/3$	E: $d_2 = -2$
B: $d_2 = 3$	D: $d_2 = 1/3$	F: $d_2 = -1/2$

Question 7 Given the function $f(x) = \cos(\pi x)$ for $x \in [0, \frac{1}{2}]$. Let p(x) be the polynomial, which interpolates f(x) at $x_0 = 0$ and $x_1 = \frac{1}{2}$. Determine the upper bound of the error R(f; x) = f(x) - p(x) at $x = \frac{1}{4}$. Hint: suppose $f \in C^{n+1}([a, b])$. For any grid X of n + 1 nodes with $a = x_0 < x_1 < \ldots < x_n = b$ the interpolation error is

$$R(f;x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=0}^{n} (x-x_j), \quad \min_i(x_i,x) < \xi < \max_i(x_i,x).$$

A: 0.31
B: 0.62
C: 4.93
D: 0.03
E: 0.22
F: 0.02

Question 8 When interpolating a smooth function with polynomials on an interval [-1,1], a grid $X = (x_0, x_1, \ldots, x_n)$ is choosen. Which of the following choices of grid x_i do you expect to give a result with minimum interpolation error for (i) a Lagrange basis, and (ii) a monomial basis?

- 1. scattered
- 2. equidistant
- 3. a higher concentration of points around the center of the domain.
- 4. a higher concentration of points near the edges of the domain.

A: (i) 1, (ii) 3.	C: (i) 2, (ii) 2.	E: (i) 3, (ii) 2.	G: (i) 4, (ii) 3.
B: (i) 2, (ii) 1.	D: (i) 2, (ii) 3.	F: (i) 4, (ii) 2.	H: (i) 4, (ii) 4.

Question 9 Suppose we want to interpolate a function f(x) on the interval [1,5] using a cubic polynomial. The grid X is given by $1 < x_0 < x_1 < \ldots < x_n < 5$. We want to use a Chebyshev grid. Compute the node x_0 . Hint: the zeros of the Cheybshev polynomial of degree m, $T_m(x)$, are given by

	$\xi_i = \cos\left(\frac{2i}{2n}\right)$	$\left(\frac{-1}{n}\pi\right), i=1,\ldots,m.$	
A: -0.924	C: 4.848	E: 1.152	G: 1.098
B: 2.618	D: 2.235	F: 1.000	H: 1.268

Question 10 Consider a function f(x) defined on the interval [0, 1], which is approximated by Lagrange interpolant p(x) constructed on a uniform grid with n + 1 points $x_i = i/n$. Which of the following statements is true in this situation?

- 1. Any number of data points n can be interpolated exactly
- 2. The interpolating polynomial passes through the given data points.
- 3. As $n \to \infty$ we can be certain that the error $|p(x) f(x)| \to 0$ for all $x \in \mathbb{R}$.
- 4. As $n \to \infty$ we can be certain that the error $|p(x) f(x)| \to 0$ for all $x \in [0, 1]$.

A: 1, 2	C: 1, 4	E: 1, 2, 3	G: $2, 3, 4$
B: 2, 3	D: 3, 4	F: 1, 3, 4	H: 1, 2, 3, 4

Question 11 A set of data points (x_i, f_i) is interpolated with polynomial interpolation. Which of the following has an influence on the interpolating polynomial?

- 1. The choice of basis (monomial, Lagrange, Newton, etc.)
- 2. The ordering of the points x_i .
- 3. The locations x_i .
- 4. The values f_i .

A: 1, 2	C: 1, 4	E: 1, 2, 3	G: 2, 3, 4
B: 2, 3	D: 3, 4	F: 1, 3, 4	H: 1, 2, 3, 4

Question 12 Consider the function $f(x) := \cos(\pi x)$ defined for $x \in [0, \frac{1}{2}]$. Let $p_1(x)$ be a first-order polynomial interpolating f(x) at the nodes $x_0 = 0$ and $x_1 = \frac{1}{2}$. What is the exact error in the interpolant $\epsilon(x) = |f(x) - p_1(x)|$ at $x = \frac{1}{4}$?

A: 0.2071	C: 4.9348	E: 0.2181
B: 0.6169	D: 0.0312	F: 0.0221

Question 13 The following data of the velocity of a body is given as a function of time.

Time (s)	0			22	
Velocity (m/s)	22	24	37	25	123

Approximate the velocity at 16s by interpolating with a linear polynomial.

A: 22.33	C: 25.33	E: 27.33
B: 24.33	D: 26.33	F: 28.33

Question 14 The following data of the velocity of a body is given as a function of time.

Time (s)	0	1	3	4	5
Velocity (m/s)	10	11	14	25	77

Approximate the velocity at 2s by interpolating with a quadratic polynomial using the 1st three data points. [Tip: The calculation is easiest with a Newton basis.]

A: 12.1333	C: 12.3333	E: 12.5333
B: 12.2333	D: 12.4333	F: 12.6333

Question 15 Determine the Lagrange interpolation polynomial given the following data set:

A: $p(x) = -x^2 + 3x - 2$	C: $p(x) = \frac{1}{8}x^3 - \frac{9}{8}x^2 + \frac{23}{8}x - \frac{15}{8}$
B: $p(x) = -4x^2 + 10x - 6$	C: $p(x) = \frac{1}{8}x^3 - \frac{9}{8}x^2 + \frac{23}{8}x - \frac{15}{8}$ D: $p(x) = \frac{5}{24}x^3 - \frac{39}{24}x^2 + \frac{67}{24}x - \frac{33}{24}$

Question 16 The following x, y data is given:

The second-order polynomial in a Newton basis for the above data is given by

$$P_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$

The value of a_2 is

$y \mid 24 37 25$

Quiz 2013 – 45 mins

Question 17 A function f(x) is interpolated on the interval $4 \le x_0 \le x_1 \le ... \le x_n \le 5$ using a polynomial of unknown degree. A Chebyshev grid was used and $x_0 = 4.0170$. What was the degree of the polynomial used for this interpolation? [Hint: The zeros of the Chebyshev polynomial of degree p on the interval [-1, 1] are given by:

	$\xi_i = \cos\left(\frac{2i}{2}\right)$	$\frac{-1}{2p}\pi\bigg), i=1,2,\ldots,p].$	
A: Unanswered	C: 3	E: 5	G: 10
B: 2	D: 4	F: 7	H: 11

Question 18 Consider the function $f(x) = x^3$. Let $p_2(x)$ be a second order polynomial which interpolates f(x) at $x_0 = 0$, $x_1 = 1$ and $x_2 = 2$. We define the L_1 -norm of the interpolation error on [a, b] as:

$$\varepsilon = \int_{a}^{b} |p_2(x) - f(x)| dx.$$

What is the value of ε on the interval [0, 1]?

 A: Unanswered
 C: $-\frac{1}{3}$ E: $-\frac{1}{3}$ G: $-\frac{8}{3}$

 B: 0
 D: $\frac{1}{4}$ F: $\frac{1}{3}$ H: $\frac{8}{3}$

Question 19 By Cauchy's theorem the interpolation error for a degree *n*-polynomial is

$$R_n(f;x) := f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x),$$

for suitable $\xi(x)$ and ω . Based on this formula, for the interpolation problem of Question 18, what is the maximum interpolation error of any point in [0, 1]?

A: UnansweredC:
$$2\sqrt{3}/9$$
E: $4\sqrt{3}/9$ G: $2\sqrt{3}/3$ B: $\sqrt{3}/9$ D: $3\sqrt{3}/9$ F: $\sqrt{3}/3$ H: $3\sqrt{3}/3$

Question 20 Consider polynomial interpolant $p_n(x)$ of the function

$$f(x) = |x|$$

on the interval $x \in [-1, 1]$, using a Chebychev grid with n + 1 nodes. Which one of the following statements is true?

- A: Unanswered
- B: By the Weierstrass theorem there exists a polynomial such that the interpolation error is less than ϵ for any $\epsilon > 0$.
- C: The interpolant $p_n(x)$ disagrees with f(x) everywhere because f(x) is not differentiable.

D: By Cauchy interpolation error theorem the interpolation error is

$$R_n(f;x) := f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \,\omega_{n+1}(x),$$

where $\omega_{n+1}(x)$ is the nodal polynomial.

E: The maximum interpolation error in the interval grows as n increases.

Question 21 A ball is dropped from rest at an altitude of 300 meters in air. Approximate its height as a function of time f(t) by a Taylor expansion about time t = 0 truncated after the quadratic term. At what time does it hit the ground? [Assume a gravitational acceleration of $10 m s^{-2}$.]

A: Unanswered	C: $5.82 s$	E: 7.48 s	G: $7.82 s$
B: 5.75 s	D: 5.98 s	F: 7.75 <i>s</i>	H: $7.98 s$

Question 22 Consider Question 21 again. We would like to correct for air resistance. At t = 8 s an exact measurement of the velocity is made. The ball is dropping at $f'(8) = -60.8 m s^{-1}$. Approximate the path of the ball by the cubic

$$p(x) = at^3 + bt^2 + ct + d.$$

What is the value of a, i.e. the cubic correction for air resistance? [Hint: Set up 4 interpolation conditions.]

A: Unanswered	C: 0.01	E: 0.05	G: 0.2
B: 0	D: 0.02	F: 0.1	H: 0.5

Question 23 Consider once more the falling ball from Question 21. An even better model correcting for air-resistance is

$$f(t) = a - b \ln\left(\cosh\left(\frac{t}{8}\right)\right)$$

where a and b are constants to be determined. We know the initial height is *precisely* 300 m. Furthermore we have two *approximate* measurements of position at later times:

t	height
4	220
8	22

What is the best choice for b in a least-squares sense? [Note: The hyperbolic cosine is defined $\cosh x = \frac{e^x + e^{-x}}{2}$.]

A: Unanswered	C: 593	E: 613	G: 641
B: 583	D: 603	F: 639	H: 643

Question 24 Perform least-squares regression with a *linear* regressor for the data set:

x	height
0	0.1
1	0.2
2	-0.1
4	0.1

At what location does the regressor have a root?

A: Unanswered	C: 2	E: 4	G: 6
B: 1	D: 3	F: 5	H: 7