Applied Numerical Analysis – Example Problems #1

Preliminaries, Taylor Expansions, Errors, Solving Non-linear Equations

Floating Point

Question 1 Consider the positive floating point number system $s \times b^e$, where b = 10, s is a 5-digit significant $1.0000 \le s \le 9.9999$ and $-8 \le e \le 8$. The system is completed with the number 0. What is the machine epsilon (i.e. the smallest number which, added to 1, is distinct from 1)?

A: 1×10^{-4} B: 9.9999×10^{-5} C: 1×10^{-5} D: 1×10^{-8}

Question 2 What is the total number of *distinct* numbers in the number system described in Question 1, including zero?

A: 99999 B: 1530001	C: 1710001	D: 999990001
---------------------	------------	--------------

Question 3 What is the result of the following algorithm, where x is computed using the number system described in Question 1:

1: $x \leftarrow x_0$ 2: for i = 1 to 100 do 3: $x \leftarrow \sqrt{x}$ 4: end for 5: for i = 1 to 100 do 6: $x \leftarrow x^2$ 7: end for

for the case when $x_0 > 1$ and $0 < x_0 < 1$, respectively? (Rounding: assume that \sqrt{x} and x^2 are performed in exact arithmetic and then rounded to the nearest representable number.)

A: 0, 0	C: 1, 0	E: 0, Overflow	G: 0, x
B: 0, 1	D: 1, 1	F: 1, Overflow	H: x, x

Taylor expansion, truncation error

Question 4 What is the third non-zero term in the Taylor expansion of cos(x) about x = 0?

$$\begin{array}{cccc} {\rm A:} & \frac{1}{4!}x & {\rm C:} & \frac{1}{4!}\cos(x) & {\rm E:} & -\frac{1}{2!}x^2 \\ {\rm B:} & \frac{1}{4!}x^4 & {\rm D:} & \frac{1}{4!}\cos(x)x^4 \end{array}$$

Question 5 Represent $f(x) = e^x$ by a 3-term truncated Taylor expansion about x = 1. What is the first term in the truncation error?

$$\begin{array}{ccccc} \text{A:} & \frac{(x-1)^3}{3}e & & \text{C:} & \frac{x-1}{6}e & & \text{E:} & \frac{(x-1)^2}{2} & & \text{G:} & \frac{x-1}{3} \\ \text{B:} & \frac{x-1}{3}e & & \text{D:} & \frac{(x-1)^3}{6}e & & \text{F:} & \frac{(x-1)^3}{3} & & \text{H:} & \frac{x-1}{6} \end{array}$$

Question 6 The function $f(x) = \exp(2x)$ is written as a 3-term Taylor expansion P(x) about $x = x_0$, plus an exact remainder term R(x), so that:

$$f(x) = P(x) + R(x).$$

What is the Lagrange form of the remainder R(x)? (Where in the following $\xi \in [x_0, x]$, and $h = x - x_0$.)

A:	$\frac{1}{3}\exp(2\xi)(x_0+h)^3$	C: $\frac{1}{6} \exp(2h) \xi^3$
B:	$\frac{4}{3}\exp(2\xi)h^3$	D: $\frac{8}{6}(h\xi)^3$

Question 7 Write sin(x) as a truncated Taylor series expansion about x = 0 with two *non-zero* terms. What is the magnitude of the first non-zero term in the truncation error at $x = \frac{\pi}{2}$?

A: 0.07969	B: 0.02	C: 0.008727	D: 0.008333

Question 8 Approximate e^{-x^2} by a 2-term Taylor series expansion about x = 1. What is the magnitude of the first term in the truncation error at x = 0?

A:
$$e^{-1}$$
 B: $2e^{-1}$ C: $\frac{1}{2}e^{-1}$ D: $\frac{1}{3}e^{-1}$

Root-finding

Question 9 What is the approximation of the root of the function $f(x) = e^x - 1$, if three steps of repeated bisection are applied on a starting interval $[x_1, x_2] = [-2, 1]$? (The root approximation is the center of the remaining interval.)

A: -0.5	C: -0.125	E: 0.1331
B: -0.39346	D: 0	F: 0.75

Question 10 Assume that a function f(x) has multiple roots in the interval [a, b], and f(a) > 0, f(b) < 0. Repeated bisection is applied, starting on this interval. How will the iteration behave? (Hint: perform the algorithm graphically on a suitable curve.) It will:

- A: Take no steps.
- B: Fail to converge.
- C: Converge to one of the roots.
- D: Converge to more than one root.
- E: Terminate with a solution which is not a root.
- F: Terminate with an interval containing all roots.

Question 11 Rearrange the function $f(x) = e^x - 5x^2$ (without adding terms) into a suitable format for fixed-point iteration. Make sure the iteration converges to a root, starting at an initial guess of $x_0 = 10$. What is the estimate of the root after two iterations of your method? (You may need to try more than one choice of fixed-point iteration.)

A: 0C: 1.156E: 5.263B: 0.447D: 4.708F: 9.572

Question 12 Given a particular fixed-point iteration $x_{i+1} = g(x_i)$ which is known to converge, how do you expect the error ϵ of consecutive iterations to be related? (K is some constant with |K| < 1.)

Question 13 Apply Newton's method to $g(x) = 8^x - 8x^3$. Algebraically there is a root at x = 1. What is the absolute error to this root after a single iteration, using an initial guess of $x_1 = 0.5$?

A: -15.436	B: 0	C: 0.435	D: 0.565	E: 14.936

Question 14 Does the Newton iteration in Question 13 converge using the given initial guess?

- A: Yes, the iterations converge to x = 1.
- B: Yes, although it doesn't converge to x = 1.
- C: No, Newton's method diverges using this guess.
- D: No, the iterations oscillate forever.
- E: More information is needed to answer this question.

Question 15 Consider the two-variable problem consisting of two scalar equations:

$$x^2 + y^2 = 1, \quad xy = \frac{1}{4}$$

Newton's method is applied to solve this system. Which of the following represents the first iteration of Newton's method for this system, with an initial guess of $x_0 = 2, y_0 = -1$? (Where $\Delta x_0 = x_1 - x_0$, and similarly for y.) [Hint: For multiple equations and variables the derivatives form a matrix.]

A: $\frac{4\Delta x_0 - 1\Delta y_0}{4} = 0, \quad \frac{-2\Delta x_0 + 2\Delta y_0}{-2.25} = 0$ B: $\frac{4\Delta x_0 - 1\Delta y_0}{\Delta x_0} = -2.25, \quad \frac{-2\Delta x_0 + 2\Delta y_0}{\Delta y_0} = 4$ C: $4\Delta x_0 - 1\Delta y_0 = 4, \quad -2\Delta x_0 + 2\Delta y_0 = -2.25$ D: $4\Delta x_0 - 2\Delta y_0 = -4, \quad -1\Delta x_0 + 2\Delta y_0 = 2.25$

Question 16 What is the behaviour of Newton's method for the equations given in Question 15, and an initial condition for which $x_0 = y_0$?

- A: Converges to a root with a quadratic rate of convergence.
- B: Converges to a root with only a linear rate of convergence.
- C: Converges in 1 iteration.
- D: Converges to a false root at x = 0, y = 0.
- E: Diverges in 1 iteration.
- F: Diverges in several iterations.

Quiz 2013 – 45 mins

Question 17 Find the first 3 terms of the Taylor expansion of $f(x) = e^x$ about $x_0 = 0$. These first 3 terms can be considered an approximation of f(x) near 0. What is the value of this approximation at x = 1?

A: 3.0	C: 2.5	E: 1.5
B: 2.7182818	D: 2.0	F: 1.0

Question 18 Consider the positive floating point number system $s \times b^e$, where b = 10, s is a 16-digit significant $1 \le s \le 10 - 1 \times 10^{-15}$ and $-300 \le e \le 300$. This is close to the double-precision standard. What is the machine epsilon in this system (i.e. the smallest number which, when added to 1, gives a result distinct from 1)?

A: 1×10^{-7}	C: 1×10^{-13}	E: 1×10^{-15}	G: 1×10^{-299}
B: 1×10^{-8}	D: 1×10^{-14}	F: 1×10^{-16}	H: 1×10^{-300}

Question 19 Consider the floating-point system from Question 18. Recursive bisection is applied in exact arithmetic to find a root of a function f(x) starting on the interval [0, 1]. How many iterations can be performed before the interval width is smaller than the smallest number respresented in the floating-point system?

A: 4	C: 49	E: 449	G: 4449
B: 9	D: 96	F: 996	H: 9996

Question 20 Consider the floating-point system from Question 18. Newton's method is now applied in exact arithmetic to find a root of a function f(x). Let the initial error be $\epsilon_0 = 0.1$, and assume Newton's method converges quadratically from here. Approximately how many iterations are required before the interval width is smaller than the smallest number respresented in the floating-point system?

A: 4	C: 49	E: 449	G: 4449
B: 9	D: 96	F: 996	H: 9996

Question 21 Consider once more the floating point number system from Question 18, this time completed with the number 0, a sign bit, and an infinity condition inf. Newton's method is applied in this system to the function $f(x) = x^2 + \frac{1}{x}$, which has a unique root at x = -1, a zero derivative at $\hat{x} = \sqrt[3]{\frac{1}{2}}$ and a singularity at x = 0. Which one of the following statements is true?

A: The singularity causes divergence for any initial guess x_0 .

B: The finite accuracy of the system means the iteration will always converge.

C: The iteration will not converge for $x_0 = 0$.

D: The iteration will not converge for $x_0 = \hat{x}$.

E: The iteration will not converge for both $x_0 = 0$ and $x_0 = \hat{x}$.

F: None of the above.

Question 22 Consider the function f(x) = (x+2)(x-1)(x-3). We are interested in finding the root closest to zero. We apply repeated bisection with the following starting intervals:

1. [-1, 2]

2. [0, 8]

- 3. [-3,0]
- 4. [-5, 5]

For exactly which of these intervals does the method converge to x = 1? [It may be helpful to sketch the curve and apply the method by hand to see what happens.]

A: 1 only	C: 2,3,4 only	E: $1,4$ only	G: All
B: 2,3 only	D: 4 only	F: 1,2,3 only	H: None

Question 23 A fixed point iteration is specified as:

$$x_{i+1} = x_i^2 - 2x_i + 1.$$

What equation is being solved here?

A: $0 = x_i^2 - x_i + 1$	D: $0 = x_i^2 + x_i + 1$
B: $0 = x_i^2 - 2x_i + 1$	E: $0 = x_i^2 + 1$
C: $0 = x_i^2 - 3x_i + 1$	F: $0 = x_i^3 - x_i^2 + x_i$

Question 24 Apply a single iteration of Newton's method to the function $f(x) = 2^x - 1$, using an initial guess of $x_0 = 1$. What is the updated estimate of the root, x_1 ?

A: 0.279C: 0.297E: 0.419B: 0.289D: 0.393F: Diverges

Homework 1