What to know

- Specifying type of ODE
- Convert high-order ODEs to system of first order ODEs
- Graphical interpretation of ODE integration schemes
- Implementation of given ODE integration schemes
- Determination order of convergence ODE integration schemes

1

• Determination stability regions ODE integration schemes

Ordinary differential equations

- First order: highest derivative is first derivative y'(x)
- Ordinary: y = y(x), i.e. function of one variable x

 $y'(x) = f(x, y(x)), \quad x \in I = [x_0, x_n]$

In general, infinitely many solutions y(x)

Ordinary differential equations

- First order: highest derivative is first derivative y'(x)
- Ordinary: y = y(x), i.e. function of one variable x

$$y'(x) = f(x, y(x)), \quad x \in I = [x_0, x_n]$$

- In general, infinitely many solutions y(x)
- Initial / boundary conditions need to be specified for a single solution

initial condition

boundary condition

 $g(y(x_0), y(x_n)) = 0$

 $y(x_0) = y_0$

Ordinary differential equations

- First order: highest derivative is first derivative y'(x)
- Ordinary: y = y(x), i.e. function of one variable x

$$y'(x) = f(x, y(x)), \quad x \in I = [x_0, x_n]$$

• Initial / boundary conditions need to be specified for a single solution

initial value problem

boundary value problem

$$y(x_0) = y_0$$

$$g(y(x_0), y(x_n)) = 0$$

Ordinary differential equations

• System of p first-order ordinary differential equations, i.e.

$$\vec{y}'(x) = \vec{f}(x, \vec{y}(x)) - \begin{cases} y_1'(x) &= f_1(x, y_1(x), y_2(x), \dots, y_p(x)) \\ y_2'(x) &= f_2(x, y_1(x), y_2(x), \dots, y_p(x)) \\ \vdots \\ y_p'(x) &= f_p(x, y_1(x), y_2(x), \dots, y_p(x)) \end{cases}$$

initial conditions $\vec{y}(x_0) = \vec{y}_0 = \begin{pmatrix} y_1(x_0) \\ \vdots \\ y_p(x_0) \end{pmatrix}$

•

Ordinary differential equations

m-th order ordinary differential equation $y^{(m)}(x) = f(x, y(x), y'(x), ..., y^{(m-1)}(x))$

initial conditions $y^{(i)}(x_0) = y_0^{(i)}, \quad i = 0, 1, ..., m-1$

• Transform m-th order ordinary differential equation to an equivalent system of m first order ordinary differential equations by using auxiliary functions:

$$\begin{vmatrix} z_{1}(x) &= y(x) \\ z_{2}(x) &= y'(x) \\ \vdots \\ z_{m}(x) &= y^{(m-1)}(x) \end{vmatrix} \ \left(\begin{matrix} z_{1}' \\ \vdots \\ z'_{m-1} \\ z'_{m} \end{matrix} \right) = \begin{pmatrix} z_{2} \\ \vdots \\ z_{m} \\ f(x, z_{1}, z_{2}, ..., z_{m}) \end{pmatrix}$$

Ordinary differential equations

- Newton's second law of motion: my''(t) = mg ky(t)
- 2nd order ordinary differential equation
- Introduce the auxiliary functions:

 $z_1(t) = y(t)$

 $z_2(t) = y'(t)$

 $\begin{pmatrix} z_1' \\ z_2' \end{pmatrix} = \begin{pmatrix} z_2 \\ g - (k/m) z_1 \end{pmatrix}$

 $y(x) = C \exp\left[-x/2\right] + x - 2$

Solving ODEs Forward Euler-Cauchy

Solving ODEs Forward Euler-Cauchy

Solving ODEs Forward Euler-Cauchy

Approximate slope at x_0 with forward-difference:

$$y'(x_0) \approx \frac{y(x_0+h) - y(x_0)}{h}$$

Approximation at x_1 : $y(x_1) \approx y(x_0) + y'(x_0)[x_1-x_0]$

 $\eta(x_1) = \eta(x_0) + \eta'(x_0)[x_1 - x_0]$

Solving ODEs Forward Euler-Cauchy

Solving ODEs Forward Euler-Cauchy

$$\eta_{i+1} = \eta_i + h \cdot f(x_i, \eta_i) \qquad \eta_0 = y(x_0)$$

$$y_{i+1} = y_i + h \cdot f(x_i, y_i) + O(h^p)$$

• Taylor expansion of y_{i+1}

Global order is always one less than local order!!!

$$\eta_{i+1} = \eta_i + h \cdot f(x_i, \eta_i) \qquad \eta_0 = y(x_0)$$

h	ŋ 1 -y 1	ŋ _n -y _n
0.3000	0.0471	0.1155
0.1500	0.0121	0.0565
0.0750	0.0031	0.0279
0.0375	0.0008	0.0139
0.0187	0.0002	0.0069

$$\eta_{i+1} = \eta_i + h \cdot f(x_i, \eta_i) \qquad \eta_0 = y(x_0)$$

- Single step
- Local order of convergence: 2
- Global order of convergence: 1

$$\eta_{i+1} = \eta_i + h \cdot f(x_i, \eta_i) \qquad \eta_0 = y(x_0)$$

Solving ODEs Backward Euler-Cauchy

$$\eta_{i+1} = \eta_i + h \cdot f(x_{i+1}, \eta_{i+1})$$
 $\eta_0 = y(x_0)$

• Implicit formula: unknown η_{i+1} on both sides \rightarrow recall fixed-point iteration from Module 1

$$\eta_{i+1} = \eta_i + h \cdot f(x_{i+1}, \eta_{i+1})$$

$$\eta_{i+1} = \varphi(\eta_{i+1})$$

$$\eta_{i+1}^{(k+1)} = \varphi(\eta_{i+1}^{(k)}) \qquad k = 0, 1, \dots, k_0$$

TUDelft

Solving ODEs Backward Euler-Cauchy

 $y' = \frac{x - y}{2}$ *Y* ▲ 1 1 Х split up interval - \rightarrow $x_0 \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7$ $x_8 x_9 x_{10}$

TUDelft

Solving ODEs
Backward Euler-Cauchy

$$\eta_{1} = \eta_{0} + h \cdot f(x_{1}, \eta_{1})$$

 $\eta_{1}^{(k+1)} = \varphi(\eta_{1}^{(k)})$
 $\eta_{1}^{(0)} = \eta_{0} + h \cdot f(x_{0}, \eta_{0})$
 $y' = \frac{x - y}{2}$

Solving ODEs
Backward Euler-Cauchy
$$y' = \frac{x - y}{2}$$
$$\eta_1 = \eta_0 + h \cdot f(x_1, \eta_1)$$
$$\eta_1^{(k+1)} = \varphi(\eta_1^{(k)})$$
$$\eta_1^{(0)} = \eta_0 + h \cdot f(x_0, \eta_0)$$

Solving ODEs
Backward Euler-Cauchy

$$y' = \frac{x - y}{2}$$

 $\eta_1 = \eta_0 + h \cdot f(x_1, \eta_1)$
 $\eta_1^{(k+1)} = \varphi(\eta_1^{(k)})$
 $\eta_1^{(0)} = \eta_0 + h \cdot f(x_0, \eta_0)$
 $\eta_1^{(1)} = \varphi(\eta_1^{(0)})$
 $\eta_1^{(1)} = \eta_0 + h \cdot f(x_1, \eta_1^{(0)})$

Solving ODEs
Backward Euler-Cauchy

$$y' = \frac{x - y}{2}$$

 $\eta_1 = \eta_0 + h \cdot f(x_1, \eta_1)$
 $\eta_1^{(k+1)} = \varphi(\eta_1^{(k)})$
 $\eta_1^{(0)} = \eta_0 + h \cdot f(x_0, \eta_0)$
 $\eta_1^{(2)} = \varphi(\eta_1^{(1)})$
 $\eta_1^{(2)} = \eta_0 + h \cdot f(x_1, \eta_1^{(1)})$

$$\eta_{i+1} = \eta_i + h \cdot f(x_{i+1}, \eta_{i+1})$$
 $\eta_0 = y(x_0)$

h	 η₁-y ₁	ŋ _n -y _n
0.3000	0.0390	0.1058
0.1500	0.0110	0.0540
0.0750	0.0029	0.0273
0.0375	0.0007	0.0137
0.0187	0.0002	0.0069

$$\eta_{i+1} = \eta_i + h \cdot f(x_{i+1}, \eta_{i+1})$$
 $\eta_0 = y(x_0)$

Solution marching: forward vs backward differencing

Governing equation: y'(x) = f(y)Initial condition: $y(0) = y_0$

Solution on the interval [0,T], approximated by $y_i = y(x_0 + ih)$

0

Solution marching: forward vs backward differencing

Governing equation: y'(x) = f(y)Initial condition: $y(0) = y_0$

Solution on the interval [0,T], approximated by $y_i = y(x_0 + ih)$

Initial condition : y_0 is known!

Solution marching: forward vs backward differencing

Governing equation: y'(x) = f(y)Initial condition: $y(0) = y_0$

Solution on the interval [0,T], approximated by $y_i = y(x_0 + ih)$

Solution marching: forward vs backward differencing

Governing equation: y'(x) = f(y)Initial condition: $y(0) = y_0$

Solution on the interval [0,T], approximated by $y_i = y(x_0 + ih)$

Solution marching: forward vs backward differencing

Governing equation: y'(x) = f(y)Initial condition: $y(0) = y_0$

Solution on the interval [0,T], approximated by $y_i = y(x_0 + ih)$

Solution marching: forward vs backward differencing

Governing equation: y'(x) = f(y)Initial condition: $y(0) = y_0$

Solution on the interval [0,T], approximated by $y_i = y(x_0 + ih)$

Delft

Forward vs Backward Euler

Governing equation: y'(x) = f(y)

Forward (explicit) Euler

- Uses forward difference for y'
- Global truncation error O(h)
- Explicit formulation for y_{i+1}
- Local truncation error $O(h^2)$
- "Cheap" to solve

Backward (implicit) Euler

- Uses backward difference for y'
- Global truncation error O(h)
- Implicit formulation for y_{i+1}
- Local truncation error $O(h^2)$
- "Expensive" to solve

$$y'(x_i) = \frac{y(x_i + h) - y(x_i)}{h} + O(h)$$

$$y_{i+1} = y_i + hf(y_i) + O(h^2)$$

$$y'(x_{i+1}) = \frac{y(x_i + h) - y(x_i)}{h} + O(h)$$
$$y_{i+1} = y_i + hf(y_{i+1}) + O(h^2)$$

Forward vs Backward Euler

Stability

- In practice, discretization errors and rounding errors accumulate during time stepping
- Stable algorithm: error in one step not amplified when performing next steps.
- Unstable algorithm: for arbitrarily large number of steps, difference between approximation and true solution continuously increases.
- Cause instability
 - The ordinary differential equation
 - Stable ODE \rightarrow stable solution if integration algorithm stable
 - Unstable ODE \rightarrow no stable solution
 - The integration algorithm

Stability Ordinary differential equation

y' = cy c < 0 y' = -y

c > 0y' = y

Stability Integration algorithm

• Take as test function: y' = cy $c \in \mathbb{C}$ (c complex)

• $c = \alpha + \beta i$

Stability Integration algorithm

- Take as test function: y' = cy $c \in \mathbb{C}$ (c complex)
- We want the numerical integration to be bounded (stable) for cases where $Re(c) \le 0$: an initial error should not amplify!
- Set up time integration formula for test function

Forward Euler Cauchy
$$\begin{aligned} \eta_{i+1} &= \eta_i + h \cdot f\left(x_i, \eta_i\right) \\ \eta_{i+1} &= \eta_i + h \cdot c \cdot \eta_i = (1 + h \cdot c) \eta_i \\ \eta_{i+1} &= (1 + h \cdot c)^{i+1} \eta_0 \\ & 1 + h \cdot c | \leq 1 \end{aligned}$$

To ensure that errors aren't amplified

Stability Integration algorithm: Forward Euler Cauchy

 $|1+h\cdot c| \leq 1$

• Note that *c* is defined in the complex plane (imaginary values lead to oscillatory solutions of the ODE) $c = \alpha + \beta i$

Im(hc)

$$|1+h \cdot c| = |1+h\alpha+h\beta i| = \sqrt{(1+h\alpha)^2 + (h\beta)^2} \le 1$$

$$(1+h\alpha)^2 + (h\beta)^2 \le 1$$
Re(hc)

Stability Integration algorithm: Forward Euler Cauchy

 $|1+h\cdot c| \leq 1$

• Note that *c* is defined in the complex plane (imaginary values lead to oscillatory solutions of the ODE) $c = \alpha + \beta i$

Stability Integration algorithm: Forward Euler Cauchy

 $|1+h\cdot c| \leq 1$

• Note that *c* is defined in the complex plane (imaginary values lead to oscillatory solutions of the ODE) $c = \alpha + \beta i$

$$c = -0.5 + 1.5i$$

$$h = 1 \qquad \text{Im(hc)}$$

$$|1 + h \cdot c| = |1 + h\alpha + h\beta i| = \sqrt{(1 + h\alpha)^2 + (h\beta)^2} \le 1$$

$$(1 + h\alpha)^2 + (h\beta)^2 \le 1$$

$$(1 + h\alpha)^2 + (h\beta)^2 \le 1$$
Re(hc)

Stability Integration algorithm: Forward Euler Cauchy

 $|1+h\cdot c| \leq 1$

• Note that *c* is defined in the complex plane (imaginary values lead to oscillatory solutions of the ODE) $c = \alpha + \beta i$

$$c = -0.5 + 1.5i$$

$$h = 0.5 \quad \text{Im(hc)}$$

$$|1 + h \cdot c| = |1 + h\alpha + h\beta i| = \sqrt{(1 + h\alpha)^{2} + (h\beta)^{2}} \le 1$$

$$(1 + h\alpha)^{2} + (h\beta)^{2} \le 1$$

$$(1 + h\alpha)^{2} + (h\beta)^{2} \le 1$$

Re(hc)

Stability Integration algorithm: Forward Euler Cauchy

 $|1+h\cdot c| \leq 1$

• Note that *c* is defined in the complex plane (imaginary values lead to oscillatory solutions of the ODE) $c = \alpha + \beta i$

$$c = -0.5 + 1.5i$$

$$h = 0.25 \quad \text{Im(hc)}$$

$$|1 + h \cdot c| = |1 + h\alpha + h\beta i| = \sqrt{(1 + h\alpha)^{2} + (h\beta)^{2}} \le 1$$

$$(1 + h\alpha)^{2} + (h\beta)^{2} \le 1$$

$$(1 + h\alpha)^{2} + (h\beta)^{2} \le 1$$

Re(hc)

Stability Integration algorithm: Forward Euler Cauchy

 $|1+h\cdot c| \leq 1$

• Note that *c* is defined in the complex plane (imaginary values lead to oscillatory solutions of the ODE) $c = \alpha + \beta i$

$$c = -0.5 + 1.5i$$

$$h = 0.25 \quad \text{Im(hc)}$$

$$|1 + h \cdot c| = |1 + h\alpha + h\beta i| = \sqrt{(1 + h\alpha)^2 + (h\beta)^2} \le 1$$

$$(1 + h\alpha)^2 + (h\beta)^2 \le 1$$

Re(hc)

Stability Integration algorithm

- Take as test function: y' = cy
- Set up time integration formula for test function
 - Backward Euler Cauchy

$$\eta_{i+1} = \eta_i + h \cdot f\left(x_{i+1}, \eta_{i+1}\right)$$

$$\eta_{i+1} = \eta_i + h \cdot c \cdot \eta_{i+1}$$
$$\eta_{i+1} = \frac{\eta_0}{(1 - h \cdot c)^{i+1}}$$
$$\left| \frac{1}{1 - h \cdot c} \right| \le 1$$

To ensure that errors aren't amplified

We only consider the left hand side of the plane Re(hc) → this is where the ODE is stable Integration algorithm: Forward vs. Backward Euler Cauchy

Forward Euler Cauchy $|1+h\cdot c| \le 1$ Im(hc)

Conditionally stable

Unconditionally stable

Ordinary differential equations

- Newton's second law of motion: my''(t) = mg ky(t)
- 2nd order ordinary differential equation
- Introduce the auxiliary functions:
- System of 2 first-order ODEs:
- Initial conditions:

 $z_1(0) = y(0)$ Initial position $z_2(0) = y'(0)$ Initial velocity

 $z_1(t) = y(t)$

 $z_2(t) = y'(t)$

 $\begin{pmatrix} z_1' \\ z_2' \end{pmatrix} = \begin{pmatrix} z_2 \\ g - (k/m) z_1 \end{pmatrix}$

All eigenvalues λ_i of A should satisfy $\lambda_i h$ within stability region for the integration to be stable

Concluding remarks

- Convert high-order ODEs to system of first order ODEs
- Graphical interpretation of ODE integration schemes
- Implementation of given ODE integration schemes
- Determination order of convergence ODE integration schemes:
 - Use Taylor series for the analysis
 - Higher order can be obtained using higher order differencing
 - Higher order can be obtained using higher order quadrature rules
- Determination stability regions ODE integration schemes:
 - Analyse the amplification of an initial error
 - Stable simulation when $\lambda_i h$ is within the stability region for all eigenvalues of A

 $\vec{z}'(t) = A \, \vec{z}(t) + \vec{b}$

